25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1584 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

~<br />

T<br />

T<br />

{ r∈Θ<br />

}<br />

r<br />

P w r ≥m<strong>in</strong>w r ≥ p<br />

The optimal problem reduces to a convex second-order<br />

cone program[18].<br />

T<br />

2 T<br />

max w μ − δ Σ<br />

1/ w 1 = 1,<br />

l ≤ w ≤ u<br />

w<br />

{ }<br />

2<br />

Accord<strong>in</strong>g to the Central Limit Theorem, it is<br />

^<br />

concluded that the sample mean μ is approximately<br />

normally distributed. That is ,it follows:<br />

^<br />

⎛ Σ ⎞<br />

μ ~ N ⎜ μ,<br />

⎟<br />

⎝ n ⎠<br />

Similarly, the ellipsoidal uncerta<strong>in</strong>ty set for the<br />

mean μ can be expressed as<br />

Θ<br />

μ<br />

−1<br />

⎪⎧<br />

^<br />

⎛ Σ<br />

^<br />

⎛ ⎞ ⎞ ⎛ ⎞ ⎪⎫<br />

2<br />

= ⎨μ<br />

: ⎜ μ − μ ⎟⎜<br />

⎟ ⎜ μ − μ ⎟ ≤ κ ⎬<br />

⎪⎩ ⎝ ⎠⎝<br />

n ⎠ ⎝ ⎠ ⎪⎭<br />

where κ = q / 1−<br />

q for some q ∈[0,1)<br />

The problem reduces to<br />

⎪⎧<br />

1/ 2<br />

^<br />

⎛ Σ<br />

^ 1/ 2<br />

⎪⎫<br />

T ⎞<br />

T<br />

max⎨w<br />

μ−κ<br />

⎜ ⎟ w −δ<br />

Σ w w 1 = 1, l ≤ w ≤ u⎬<br />

w<br />

⎪⎩<br />

⎝ n ⎠<br />

2<br />

2<br />

⎪⎭<br />

See[19] the problem is f<strong>in</strong>ally reduced to<br />

⎪⎧<br />

^<br />

^ 1 / 2<br />

⎪⎫<br />

T<br />

1 / 2<br />

T<br />

max⎨w<br />

μ − κ Ω w − δ Σ w w 1 = 1, l ≤ w ≤ u⎬<br />

w<br />

2<br />

⎪⎩<br />

2<br />

⎪⎭<br />

where<br />

Σ 1 Σ T Σ<br />

Ω = − 11<br />

n T Σ n n<br />

1 1<br />

n<br />

In this paper, firstly, we consider the uncerta<strong>in</strong> set for<br />

return mean. We def<strong>in</strong>e r′ is the estimation of real<br />

value r , the uncerta<strong>in</strong>ly set I as<br />

{ : i<br />

′ i i i<br />

′ i }<br />

I = r r −s ≤r ≤ r + s for mean μ .<br />

Accord<strong>in</strong>g to Anna[20], the robust counterpart:<br />

rx ≥ r<br />

∑<br />

m<strong>in</strong><br />

i i p<br />

can be transferred to the follow<strong>in</strong>g form:<br />

⎧∑rx ′<br />

i i<br />

−∑sm i i<br />

≥rp<br />

⎪<br />

⎨ mi<br />

≥ xi<br />

⎪<br />

⎩ si<br />

≥ 0<br />

The robust counterpart of objective function is<br />

n<br />

m<br />

⎛ ⎧<br />

C P ⎫⎞<br />

max ⎜∑⎨xr i i<br />

+ ∑ { βik Rik + γik Rik}<br />

⎬⎟<br />

x, βγ ,<br />

⎝ i= 1 ⎩ k=<br />

1<br />

⎭⎠<br />

let x αβγ<br />

is the share of stock and options.<br />

The goal is to determ<strong>in</strong>e the solution of above problem<br />

under the constra<strong>in</strong>ts.<br />

Ⅲ.MONTE CARLO SIMULATION AND EMPIRICAL EXAMPLE<br />

A. Monte Carlo Method and the Simulation Process<br />

Compar<strong>in</strong>g with other numerical methods, Monte<br />

Carlo simulation has two major advantages: first, more<br />

flexible, easy to implement and improvement; secondly,<br />

the simulation of estimation error and convergence speed<br />

<strong>in</strong> solv<strong>in</strong>g the problem has strong <strong>in</strong>dependence of<br />

dimension. European option because of its execution time<br />

is fixed, not to be executed <strong>in</strong> advance, therefore it only<br />

need to calculate the earn<strong>in</strong>gs of the option of each<br />

sample path at expiration date, which is available by<br />

Matlab programm<strong>in</strong>g. [21-23] discuss the application of<br />

the simulation methods <strong>in</strong> various area. Monte Carlo<br />

method can overcome the obstacle and we use it further<br />

to improve the accuracy of simulated price with the<br />

enhancement of reduction variate technique for more<br />

complex options whose payoff function is dependent on<br />

the underly<strong>in</strong>g asset path and sum of asset is more than<br />

one.<br />

Now, we illustrate the key steps <strong>in</strong> Monte Carlo. It is<br />

saw that to draw samples of the term<strong>in</strong>al stock price<br />

S( T ) it suffices to have a mechanism for draw<strong>in</strong>g<br />

samples from the standard normal distribution. For now<br />

we simply assume the ability to produce a sequence<br />

Z1,<br />

Z2 of <strong>in</strong>dependent standard normal random<br />

variables. Given a mechanism for generat<strong>in</strong>g the Z<br />

i<br />

, we<br />

rT<br />

can estimate E⎡<br />

−<br />

e ( ST<br />

− K )<br />

+ ⎤ us<strong>in</strong>g the follow<strong>in</strong>g<br />

⎣<br />

⎦<br />

algorithm:<br />

For i = 1, 2n<br />

generate<br />

Z<br />

i<br />

⎛⎡<br />

1 ⎤ ⎞<br />

Si<br />

T = S0<br />

exp⎜⎢<br />

r− σ +<br />

2 ⎥<br />

T σ TZi⎟<br />

⎝⎣<br />

⎦ ⎠<br />

set ( )<br />

2<br />

C = e S −K<br />

−rT<br />

set ( ) +<br />

^<br />

i<br />

set n = ( + + + )<br />

T<br />

C C C C n<br />

1 2 n<br />

/<br />

For any n ≥ 1, the estimator C n is unbiased, <strong>in</strong> the<br />

sense that its expectation is the target quantity:<br />

^<br />

⎛ ⎞<br />

− rT<br />

+<br />

E⎜Cn<br />

⎟= C = E⎡<br />

⎣e ( ST<br />

−K)<br />

⎤<br />

⎝ ⎠<br />

⎦<br />

The estimator is strongly consistent mean<strong>in</strong>g that as<br />

n →∞.<br />

In this paper, we suppose z = z()<br />

t is a random<br />

process, the change <strong>in</strong> a very small time <strong>in</strong>terval Δt<br />

is<br />

expressed as Δ z . If Δz<br />

satisfies that Δ z = ε Δ t where<br />

ε ∼ N ( 0,1)<br />

. For different time <strong>in</strong>terval Δ t , Δz<br />

are<br />

<strong>in</strong>dependent, then call z = z()<br />

t follows Wiener process.<br />

Suppose the stock price follows ds = μsdt + σ sdz ,<br />

where dz is the Standard Brown motion. In the practical<br />

^<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!