25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1490 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

control. So, λ is selected larger than the magnitude of the<br />

uncerta<strong>in</strong>ty and it will affect the convergence rate of the<br />

track<strong>in</strong>g error, and Ξ is chosen very small to best<br />

approximate the sign function and it will affect the size<br />

of the residual set to which the track<strong>in</strong>g error will<br />

converge. The sign function is not used here to avoid<br />

problems associated with it as chatter<strong>in</strong>g and solutions<br />

existence.<br />

By add<strong>in</strong>g and subtract<strong>in</strong>g ν <strong>in</strong> (3), we obta<strong>in</strong><br />

T<br />

T<br />

bPe<br />

e ⎛ ⎞<br />

= ( A0 −bK ) e −bλ<br />

tanh ⎜ ⎟−b[ h( ξη , , u)<br />

−v]<br />

(5)<br />

⎝ Ξ ⎠<br />

From the fact that the signal v does not explicitly<br />

depend upon the control <strong>in</strong>put u and Assumption 1, the<br />

partial derivative of h(, ξη , u)<br />

− v with respect to the<br />

<strong>in</strong>put u satisfies<br />

( ξη )<br />

∂ h(, , u) −v ∂h(, ξη, u)<br />

= > 0<br />

∂u<br />

∂u<br />

Thus accord<strong>in</strong>g to the implicit function theorem, there<br />

exists some ideal controller u * ( ξην , , ) satisfy<strong>in</strong>g the<br />

follow<strong>in</strong>g equality for all (, ξη,) v ∈ × ×<br />

R<br />

R<br />

:<br />

ξ<br />

η<br />

(6)<br />

*<br />

h(, ξη, u (, ξη ,)) v − v = 0<br />

(7)<br />

Therefore, if the control <strong>in</strong>put u is chosen as the ideal<br />

controller u<br />

* (, ξη ,) v , the closed-loop error dynamic (5) is<br />

reduced to<br />

T<br />

T<br />

b Pe<br />

e ⎛ ⎞<br />

= ( A0 −bK ) e −bλ<br />

tanh ⎜ ⎟ (8)<br />

⎝ Ξ ⎠<br />

Consider<strong>in</strong>g the follow<strong>in</strong>g positive function to the<br />

error dynamic:<br />

V<br />

T<br />

= e Pe<br />

(9)<br />

Us<strong>in</strong>g (4) and (8), the time derivative of (9) becomes<br />

T<br />

T T b Pe<br />

V ⎛ ⎞<br />

=−e Qe −2λb Pe tanh⎜ ⎟ (10)<br />

⎝ Ξ ⎠<br />

T<br />

⎛b Pe ⎞<br />

Because the term b T Pe and tanh ⎜ ⎟ always<br />

⎝ Ξ ⎠<br />

have same sign, we conclude that V<br />

≤ 0 , and only<br />

when e = 0 , V = 0 , which means lim | e | = 0 .<br />

t→∞<br />

III. ZERO DYNAMICS<br />

If system (1) is controlled by the <strong>in</strong>put u, the state<br />

vector η is completely unobservable from the output,<br />

then the subsystem<br />

dη<br />

q(0, , u(0, , v(0, )))<br />

dt = η η η (11)<br />

is addressed as the zero dynamic.<br />

Assumption 3: Zero dynamics (11) is exponentially<br />

stable, and the function q( ξη , , u)<br />

is Lipschitz <strong>in</strong>ξ . There<br />

exists Lipschitz constants L ξ<br />

and L<br />

q<br />

such that<br />

q(, ξη, u) − q(0, η, u ≤ L ξ + Lq<br />

(12)<br />

where u = u(0, η η<br />

, v(0, η ))) .<br />

By Lyapunov converse theorem, there is a Lyapunov<br />

function V ( ) 0<br />

η which satisfies<br />

η<br />

2 2<br />

1<br />

V0( )<br />

2<br />

ξ<br />

σ η ≤ η ≤ σ η (13)<br />

∂V0<br />

( η)<br />

q(0, η)<br />

≤−σ3<br />

η<br />

∂η<br />

∂V ( η)<br />

0<br />

∂η<br />

≤ σ<br />

Where σ , i = 1,2,3,4 are positive constant.<br />

i<br />

4<br />

η<br />

IV. DESIGN OF CONTROLLER<br />

2<br />

(14)<br />

(15)<br />

In control eng<strong>in</strong>eer<strong>in</strong>g, radial basis function (RBF)<br />

NNs are usually used as a tool for model<strong>in</strong>g nonl<strong>in</strong>ear<br />

functions because of their good capabilities <strong>in</strong> function<br />

approximation. RBFNN represents a class of l<strong>in</strong>early<br />

parameterized approximations and can be replaced by any<br />

other l<strong>in</strong>early parameterized approximations such as<br />

spl<strong>in</strong>e functions or fuzzy systems. Moreover, nonl<strong>in</strong>early<br />

parameterized approximations, such as multilayer neural<br />

network (MNN), can be l<strong>in</strong>earized as l<strong>in</strong>early<br />

parameterized approximations, with the higher order<br />

terms of Taylor series expansions be<strong>in</strong>g taken as part of<br />

the model<strong>in</strong>g error.<br />

In this paper, the follow<strong>in</strong>g RBF NN based on GGAP-<br />

RBF [20] algorithm which can avoid to select <strong>in</strong>itial<br />

neural network parameters and nodes number of hidden<br />

T<br />

layer artificially uz ( ) = φ ( z)<br />

θ is used to approximate<br />

the ideal controller<br />

1<br />

* T T<br />

u ( z ) , where z = ⎡ ⎣ ξ , η , v⎤<br />

⎦ ,<br />

φ( z) = ( φ ( z), , φ ( z)) T is the basic function vector, and<br />

M<br />

θ = ( θ1, , θ ) T<br />

M<br />

is the adjustable parameter. It has been<br />

proven that neural network can approximate any smooth<br />

q<br />

function over a compact set ΩZ<br />

⊂ R to arbitrarily any<br />

accuracy as<br />

( ) = φ ( ) θ + δ( ) (16)<br />

* T *<br />

u z z z<br />

with bounded function approximation error δ ( z)<br />

satisfy<strong>in</strong>g δ ( z)<br />

≤ δ .Where<br />

vector which m<strong>in</strong>imizes the function δ ( z)<br />

*<br />

θ is an ideal parameter<br />

T<br />

. In this paper,<br />

we assume that the used neural network does not violate<br />

the universal approximation property on the compact set<br />

Ω<br />

Z<br />

, which is assumed large enough so that the variable<br />

z rema<strong>in</strong>s <strong>in</strong>side it under closed-loop control.<br />

Let us def<strong>in</strong>e the control error between the controllers<br />

uz ( ) and u<br />

* ( z ) as<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!