25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1491<br />

* T<br />

e = u ( z) − u( z) = φ ( z) θ + δ( z)<br />

(17)<br />

u<br />

*<br />

where θ = θ −θ<br />

is the parameter estimation error vector.<br />

Accord<strong>in</strong>g to the mean value theorem, there exist<br />

constant 0< α < 1, h(, ξη , u)<br />

can be described as<br />

( )<br />

h ξηu h ξη u h u z u z (18)<br />

* *<br />

(, , ) = (, , ) +<br />

u<br />

() − ()<br />

λ<br />

where<br />

h =∂h(, ξη , u) ∂u|<br />

uλ<br />

u=<br />

uλ<br />

uλ = αu z + − α u z<br />

*<br />

( ) (1 ) ( )<br />

By substitut<strong>in</strong>g (5) <strong>in</strong>to the equation (18) and consider<strong>in</strong>g<br />

(7), we get<br />

T<br />

bPe<br />

*<br />

e<br />

⎛ ⎞<br />

= Ac<br />

e −bλtanh ⎜ ⎟−b⎡<br />

⎣h( ξη , , u ) −ν⎤<br />

⎦−<br />

⎝ Ξ ⎠<br />

*<br />

−bhu<br />

( u( z) −u ( z)<br />

)<br />

(19)<br />

λ<br />

T<br />

⎛bPe⎞<br />

*<br />

= Ae c −bλ<br />

tanh ⎜ ⎟−bhu<br />

( u( z) −u ( z)<br />

)<br />

λ<br />

⎝ Ξ ⎠<br />

T<br />

Consider<strong>in</strong>g Ac<br />

= A0<br />

− bK , then (19) can be rewritten as<br />

T<br />

( r) T ⎛bPe⎞<br />

*<br />

e + K e + λ tanh ⎜ ⎟ = h ( u ( z) − u( z)<br />

u ) = h e (20)<br />

λ<br />

uλ<br />

u<br />

⎝ Ξ ⎠<br />

We notice here that u<br />

* ( z)<br />

is an unknown quantity, so<br />

the signal e u<br />

def<strong>in</strong>ed <strong>in</strong> (17) is not available. Eq. (20) will<br />

be used to overcome the difficulty. Indeed, from (20), we<br />

see that even if the signal e is not available for<br />

measurement, the quantity h uλ<br />

e u<br />

is measureable. This fact<br />

will be exploited <strong>in</strong> the design of the parameters adaptive<br />

law.<br />

In order to obta<strong>in</strong> the update law ofθ , we consider a<br />

quadratic cost function def<strong>in</strong>ed as<br />

u<br />

1 2 1 * T<br />

J ( ( ) ( ) ) 2<br />

θ<br />

= eu<br />

= u z − φ z θ (21)<br />

2 2<br />

By apply<strong>in</strong>g the gradient descent method, we obta<strong>in</strong> as an<br />

adaptive law for the parameters θ<br />

θ = - γ∇ θ<br />

J ( θ) = γφ( ze ) u<br />

(22)<br />

From (22), we know e u is not available, the adaptive<br />

law (22) cannot be implemented. In order to render (22)<br />

computable, from Eq. (20), we select the design<br />

parameter γ = γ θ<br />

hu<br />

λ<br />

, where γ<br />

θ<br />

is a positive constant. We<br />

have<br />

θ = γ φ( zh ) e<br />

θ<br />

γφ<br />

⎧⎪<br />

uλ<br />

u<br />

λ<br />

( r)<br />

T<br />

=<br />

θ<br />

( z) ⎨e + K e + tanh<br />

⎪⎩<br />

⎛<br />

⎜<br />

⎝<br />

T<br />

bPe<br />

Ξ<br />

⎞⎫⎪<br />

⎟⎬<br />

⎠⎪⎭<br />

(23)<br />

At the same time, <strong>in</strong> order to improve the robustness of<br />

adaptive law <strong>in</strong> the presence of the approximation error,<br />

we modify it by <strong>in</strong>troduc<strong>in</strong>g a σ -modification term as<br />

follows:<br />

T<br />

<br />

⎧⎪<br />

( r)<br />

T<br />

⎛b Pe ⎞⎫⎪<br />

θ = γθφ( z) ⎨e + K e + λ tanh⎜<br />

⎟⎬−γ θσθ<br />

(24)<br />

⎪⎩<br />

⎝ Ξ ⎠⎪⎭<br />

whereσ is a small positive constant<br />

S<strong>in</strong>ce the function of the σ -modification adaptive law<br />

is to avoid parameter drift, it does not need to be active<br />

when the estimated parameters are with<strong>in</strong> some<br />

acceptable bound. The system stability relies entirely on<br />

the neural network because the proposed adaptive<br />

controller <strong>in</strong> the paper is only composed of a neural<br />

network part without additional control terms. The term<br />

T<br />

⎛b Pe ⎞<br />

λ tanh ⎜ ⎟<strong>in</strong> the parameter adaptive law (24) plays,<br />

⎝ Ξ ⎠<br />

<strong>in</strong> some way, the role of a robustify<strong>in</strong>g control term. Thus<br />

by select<strong>in</strong>g a large positive value for the design<br />

parameter λ and a small positive value for the<br />

parameter Ξ , the robustness of the controller can be<br />

improved.<br />

V. STABILITY AND CONVERGENCE ANALYSIS OF<br />

CONTROL SYSTEM<br />

In order to analysis the convergence of neural network<br />

weights, we firstly consider the follow<strong>in</strong>g positive<br />

function:<br />

V θ<br />

1<br />

= T<br />

θ θ<br />

(25)<br />

2 γ<br />

Us<strong>in</strong>g (17), (20) and (24), the time derivative of (25)<br />

can be written as<br />

Consider<strong>in</strong>g the <strong>in</strong>equalities<br />

θ<br />

( z hu<br />

eu<br />

)<br />

T<br />

V<br />

θ<br />

= - θ φ( ) -σθ<br />

λ<br />

T<br />

T<br />

= - φ ( z)<br />

θhu<br />

e<br />

λ u<br />

+ σθ<br />

θ<br />

T<br />

=− h e + h δ ( z)<br />

e + σθ<br />

θ<br />

2<br />

uλ<br />

u uλ<br />

u<br />

T σ σ σ<br />

σθ θ =− θ − θ + θ + θ<br />

2 2 2<br />

σ 2 σ *<br />

2<br />

≤− θ + θ<br />

2 2<br />

2 2<br />

2<br />

(26)<br />

(27)<br />

2 1 2 1 2 1<br />

− e ( ) ( ) ( ( )) 2<br />

u<br />

+ δ z eu = − eu + δ z − eu<br />

−δ<br />

z<br />

2 2 2<br />

(28)<br />

1 2 1 2<br />

≤− eu<br />

+ δ ( z))<br />

2 2<br />

Consider<strong>in</strong>g (27) and (28), Eq. (26) can be bounded as<br />

1 2<br />

2 1 2 *<br />

2<br />

V σ σ<br />

θ<br />

≤− hu eu + hu<br />

δ ( z)<br />

− θ + θ (29)<br />

λ<br />

λ<br />

2 2 2 2<br />

Because the functions δ ( z)<br />

and hu<br />

λ<br />

are bounded <strong>in</strong> this<br />

paper, and the parameters θ * are constants, so we can<br />

def<strong>in</strong>e a positive constant bound ψ as<br />

⎛1<br />

2 ⎞ σ *<br />

2<br />

ψ = sup ⎜ hu<br />

δ ( z)<br />

θ<br />

λ ⎟+<br />

(30)<br />

t ⎝2 ⎠ 2<br />

Then<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!