25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1442 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

generalization of conventional matrix product, which<br />

extends the conventional matrix product to any two<br />

matrices. It plays a fundamental rule <strong>in</strong> the follow<strong>in</strong>g<br />

discussion. We restrict it to some concepts and basic<br />

properties used <strong>in</strong> this paper. In addition, only left semitensor<br />

product for multiply<strong>in</strong>g dimension case is <strong>in</strong>volved<br />

<strong>in</strong> the paper. We refer to [14][15][16][17] for right semitensor<br />

product, arbitrary dimensional case and much<br />

more details. Throughout this paper “semi-tensor<br />

product” means the left semi-tensor product for<br />

multiply<strong>in</strong>g dimensional case.<br />

Def<strong>in</strong>ition 1: 1. Let X be a row vector of dimension<br />

np , and Y be a column vector with dimension p . Then<br />

we split X <strong>in</strong>to p equal-size blocks as 1 , 2 p<br />

X X , , X ,<br />

which are 1× n rows. Def<strong>in</strong>e the STP, denoted by × , as<br />

<strong>in</strong> (1).<br />

p<br />

⎧<br />

⎪X<br />

× Y = ∑ X<br />

i=<br />

1<br />

⎨<br />

p<br />

⎪<br />

T T<br />

Y × X =<br />

⎪⎩<br />

i=<br />

i<br />

∑<br />

1<br />

y ∈ R<br />

i<br />

y ( X<br />

i<br />

i<br />

n<br />

)<br />

T<br />

∈ R<br />

2. Let A ∈ M m × n<br />

and B∈<br />

M<br />

p × q<br />

. If either n is a<br />

factor of p , say nt = p and denote it as A ≺<br />

t<br />

B , or<br />

p is a factor of n , say n = pt and denote is as<br />

A t<br />

B , then we def<strong>in</strong>e the STP of A and B , denoted<br />

by C = A× B , as the follow<strong>in</strong>g: C consists of m × q<br />

ij<br />

blocks as C = ( C ) and each block is <strong>in</strong> (2).<br />

where<br />

ij i<br />

C A B j<br />

n<br />

(1)<br />

= × , i = 1, , m, j = 1, , q . (2)<br />

i<br />

A is the i-th row of A and<br />

B<br />

j<br />

is the j-th column<br />

of B .<br />

We use some simple numerical examples to describe it.<br />

Example 1. Let X = [1 2 3 − 1] and<br />

Then<br />

Example 2. Let<br />

X × Y = [1 2] ⋅ 1 + [3 −1] ⋅ 2 = [7 0]<br />

⎡1 2 1 1⎤<br />

A =<br />

⎢<br />

2 3 1 2<br />

⎥<br />

⎢ ⎥<br />

⎢⎣3 2 1 0⎥⎦<br />

⎡1<br />

− 2⎤<br />

, B = ⎢ ⎥ . Then<br />

⎣2<br />

−1<br />

⎦<br />

⎡1⎤<br />

Y = ⎢<br />

2 ⎥<br />

⎣ ⎦ .<br />

⎡ ⎛1⎞ ⎛−2⎞<br />

⎤<br />

⎢ ( 1 2 1 1 ) ⎜ ⎟ (1 2 1 1) ⎜ ⎟ ⎥<br />

⎢<br />

⎝2⎠ ⎝−1⎠<br />

⎥<br />

⎢<br />

⎛1⎞ ⎛−2⎞⎥<br />

A× B = ⎢( 2 3 1 2) ⎜ ⎟ ( 2 3 1 2)<br />

⎜ ⎟⎥<br />

⎢<br />

⎝2⎠ ⎝−1⎠⎥<br />

⎢<br />

⎥<br />

⎢<br />

⎛1⎞ ⎛−2⎞<br />

( 3 2 1 0) ( 3 2 1 0)<br />

⎥<br />

⎢<br />

⎜ ⎟ ⎜ ⎟<br />

⎝2⎠ ⎝−1⎠<br />

⎥<br />

⎣<br />

⎦<br />

⎡3 4 −3 −5⎤<br />

=<br />

⎢<br />

4 7 5 8<br />

⎥<br />

⎢<br />

− −<br />

⎥<br />

⎢⎣<br />

5 2 −7 −4⎥⎦<br />

B. Matrix Expression of Logic<br />

In this section, the matrix expression of logic will be<br />

given. In a logical doma<strong>in</strong>, we usually set "true" as "1"<br />

and "false" as "0". Then a logical variable is def<strong>in</strong>ed as<br />

x∈ D = {0,1} . There are several fundamental b<strong>in</strong>ary<br />

functions such as ¬ , ∧ , ∨ , ↔ , → , ∨ , ↑ and ↓ .<br />

Their truth table is as TABLE I.<br />

To use matrix expression each element can be<br />

2<br />

0 ~ δ ,<br />

1<br />

identified <strong>in</strong> D with a vector as 1~δ<br />

2<br />

and<br />

2<br />

i<br />

where δ = Col( I ) . Therefore, That a n-ary logical<br />

n<br />

n<br />

n<br />

operator (or function) is a mapp<strong>in</strong>g: f : D → D can be<br />

formed as f : Δ n →Δ.<br />

2<br />

Theorem 1: Let f ( x1<br />

, , x n<br />

) be a logical function <strong>in</strong><br />

vector form as f : Δ n →Δ. Then there exists a unique<br />

2<br />

, called the structure matrix of f , such that<br />

∈L<br />

M<br />

f 2×<br />

2 n<br />

<strong>in</strong> (3).<br />

n<br />

f ( x1<br />

, , xn)<br />

= M<br />

f<br />

× x, where x =×<br />

i=<br />

1<br />

xi<br />

(3)<br />

Therefore, the structure matrix of Negation,<br />

Conjunction, Disjunction, Equivalence and Implication<br />

are as <strong>in</strong> (4) - (11).<br />

¬<br />

= δ 2<br />

[ 2 1]<br />

[ 1 2 2 2]<br />

M (4)<br />

M<br />

∧<br />

= δ 2<br />

(5)<br />

M = δ 2 [ 1 1 1 2<br />

∨ ]<br />

(6)<br />

M = δ 2 [ 1 2 2 1<br />

↔ ]<br />

(7)<br />

M = δ 2 [ 1 2 1 1<br />

→ ]<br />

(8)<br />

p q ¬ p p∧ q p ∨ q<br />

TABLE I.<br />

TRUTH TABLE OF ¬ , ∧ , ∨ , ↔ , → , ∨ , ↑ AND ↓<br />

p ↔ q p → q<br />

p ∨ q p↑ q p ↓ q<br />

0 0 1 0 0 1 1 0 1 1<br />

0 1 1 0 1 0 1 1 1 0<br />

1 0 0 0 1 0 0 1 1 0<br />

1 1 0 1 1 1 1 0 0 0<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!