25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1497<br />

T 1 T<br />

m<strong>in</strong> ∇ f( x)<br />

d + d Hd<br />

2<br />

T<br />

s.. t g ( x) +∇ g ( x) d = 0, j∈A⊆<br />

I,<br />

j<br />

j<br />

where the so-called work<strong>in</strong>g set A ⊆ I is suitably<br />

determ<strong>in</strong>ed. If d 0<br />

= 0 and λ ≥ 0 ( λ is said to be the<br />

correspond<strong>in</strong>g KKT multiplier vector.), the algorithm<br />

stops. The most advantage of these algorithms is merely<br />

necessary to solve QP sub-problems with only equality<br />

constra<strong>in</strong>ts. However, if d<br />

0<br />

= 0 , but λ < 0 , the algorithm<br />

will not implement successfully. In [10], proposed an<br />

SQP method for general constra<strong>in</strong>ed optimization. Firstly,<br />

make use of the technique which handle the general<br />

constra<strong>in</strong>ed optimization as an <strong>in</strong>equality parametric<br />

programm<strong>in</strong>g, then, consider a new quadratic<br />

programm<strong>in</strong>g with only equality constra<strong>in</strong>ts as follow:<br />

T 1 T<br />

m<strong>in</strong> ∇ f( x)<br />

d + d Hd<br />

2<br />

T<br />

s.. t g ( x) +∇ g ( x) d =−m<strong>in</strong>{0, π ( x)}, j∈J( x).<br />

j<br />

j<br />

Where π ( x)<br />

is a suitable vector, J ( x ) is a suitable<br />

approximate active set. But the QP problems may no<br />

solution under some conditions. Recently, Zhu [14]<br />

Consider the follow<strong>in</strong>g QP sub-problem:<br />

T 1 T<br />

m<strong>in</strong> ∇ f( x)<br />

d + d Hd<br />

2<br />

T<br />

s.. t p ( x) +∇ g ( x) d = 0, j∈L.<br />

j<br />

j<br />

where p ( x ) is a suitable vector, L is a suitable<br />

j<br />

approximate active, which guarantees to hold that if<br />

d<br />

0<br />

= 0 , then x is a KKT po<strong>in</strong>t of (1), i.e., if d<br />

0<br />

= 0 , then<br />

it holds that λ ≥ 0 . Depended strictly on the strict<br />

complementarity, which is rather strong and difficult for<br />

test<strong>in</strong>g, the superl<strong>in</strong>ear convergence properties of the<br />

SQP algorithm are obta<strong>in</strong>ed. For avoid<strong>in</strong>g the superl<strong>in</strong>ear<br />

convergence depend strictly on the strict complementarity,<br />

Another some SQP algorithms (see [15]) have been<br />

proposed, however it is regretful that these algorithms are<br />

<strong>in</strong>feasible SQP type and nonmonotone. In [16], a feasible<br />

SQP algorithm is proposed. Us<strong>in</strong>g generalized projection<br />

technique, the superl<strong>in</strong>ear convergence properties are still<br />

obta<strong>in</strong>ed under weaker conditions without the strict<br />

complementarity.<br />

We will develop an improved feasible SQP method for<br />

solv<strong>in</strong>g optimization problems based on the one <strong>in</strong> [14].<br />

The traditional FSQP algorithms, <strong>in</strong> order to prevent<br />

iterates from leav<strong>in</strong>g the feasible set, and avoid Maratos<br />

effect, it needs to solve two or three QP sub-problems<br />

like (2). In our algorithm, per s<strong>in</strong>gle iteration, it is only<br />

necessary to solve an equality constra<strong>in</strong>ed quadratic<br />

programm<strong>in</strong>g, which is very similar to (4). Obviously, it<br />

is simpler to solve the equality constra<strong>in</strong>ed QP problem<br />

than to solve the QP problem with <strong>in</strong>equality constra<strong>in</strong>ts.<br />

In order to void the Maratos effect, comb<strong>in</strong>ed the<br />

generalized projection technique, a height-order<br />

correction direction is computed by an explicit formula,<br />

and it plays an important role <strong>in</strong> avoid<strong>in</strong>g the strict<br />

(3)<br />

(4)<br />

complementarity. Furthermore, its global and superl<strong>in</strong>ear<br />

convergence rate is obta<strong>in</strong>ed under some suitable<br />

conditions.<br />

This paper is organized as follows: In Section II, we<br />

state the algorithm; the well-def<strong>in</strong>ed of our approach is<br />

also discussed, the accountability of which allows us to<br />

present global convergence guarantees under common<br />

conditions <strong>in</strong> Section III, while <strong>in</strong> Section IV we deal<br />

with superl<strong>in</strong>ear convergence. F<strong>in</strong>ally, <strong>in</strong> Section V,<br />

numerical experiments are implemented.<br />

II. DESCRIPTION OF ALGORITHM<br />

The active constra<strong>in</strong>ts set of (1) is denoted as follows:<br />

I( x) = { j∈ I | g ( x) = 0, j∈ I}.<br />

(5)<br />

Now, the follow<strong>in</strong>g algorithm is proposed for solv<strong>in</strong>g<br />

the problem (1).<br />

Algorithm A:<br />

Step 0 Initialization:<br />

Given a start<strong>in</strong>g po<strong>in</strong>t<br />

0<br />

x ∈ X , and an <strong>in</strong>itial<br />

n n<br />

symmetric positive def<strong>in</strong>ite matrix H 0<br />

∈ R × . Choose<br />

1<br />

parameters ε0<br />

∈(0,1), α∈(0, ), τ ∈ (2,3) . Set k = 0 ;<br />

2<br />

Step 1. Computation of an approximate active set J<br />

k<br />

.<br />

Step 1.1. For the current po<strong>in</strong>t<br />

0<br />

j<br />

k<br />

x<br />

k<br />

ε ( x ) = ε ∈ (0,1).<br />

i<br />

∈ X , set i = 0,<br />

Step 1.2. If det( A ( x k ) T A( x k )) ≥ ε ( x<br />

k ) , let<br />

i i i<br />

k k k<br />

Jk<br />

= J( x ), Ak<br />

= A( x ), i( x ) = i , and go to Step 2.<br />

Otherwise go to Step 1.3, where<br />

k k k<br />

J ( x ) = { j∈I | −ε<br />

( x ) ≤ g ( x ) ≤0},<br />

i i j<br />

k k k<br />

A( x ) = ( ∇g ( x ), j∈J ( x )).<br />

i i i<br />

k 1 k<br />

Step 1.3. Let i = i+ 1, εi( x ) = εi<br />

− 1( x ) , and go to<br />

2<br />

Step1. 2.<br />

k<br />

Step 2. Computation of the vector d<br />

0<br />

.<br />

Step 2.1<br />

B A A A v v j J B f x<br />

T −1<br />

T k k k<br />

k<br />

= (<br />

k k) k<br />

, = (<br />

j, ∈<br />

k) = −<br />

k∇<br />

( ),<br />

k k<br />

⎧ , 0<br />

k ⎪ − vj<br />

vj<br />

<<br />

k k<br />

pj = ⎨<br />

p = ( pj, j∈Jk).<br />

k k<br />

⎪⎩ g<br />

j( x ), vj<br />

≥ 0<br />

Step 2.2 Solve the follow<strong>in</strong>g equality constra<strong>in</strong>ed QP<br />

k<br />

Sub problem at x :<br />

k T 1 T<br />

m<strong>in</strong> ∇ f( x ) d + d Hkd<br />

2<br />

k k T<br />

s. t. p +∇ g ( x ) d = 0, j∈J<br />

.<br />

j j k<br />

k<br />

Let d0<br />

be the KKT po<strong>in</strong>t of (8), and<br />

k k<br />

b = ( b , j∈J<br />

) be the correspond<strong>in</strong>g multiplier vector.<br />

j<br />

k<br />

k<br />

If d<br />

0<br />

= 0 , STOP. Otherwise, CONTINUE;<br />

(6)<br />

(7)<br />

(8)<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!