25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1563<br />

MVC 3 problem. After deformation, the problem can be<br />

solved by technology of LMI:<br />

If and only if ∃W, X ≥ 0 , λ > 0 and Y i , U j , i = 1... p ,<br />

j = 1... m and the follow<strong>in</strong>g optimization as (18) can be<br />

solved,<br />

p<br />

m<br />

m<strong>in</strong> qY i i+<br />

λ rU j j<br />

XYUWi , , , = 1 j=<br />

1<br />

∑ ∑ (18)<br />

s.t. (13)-(17).<br />

Then, accord<strong>in</strong>g to the change of λ , optimized curve of<br />

control outputs variance Var( y)<br />

and manipulative variable<br />

variance Var( u ) can be obta<strong>in</strong>ed. This optimized curve<br />

can be used as the benchmark to evaluate controller<br />

performance.<br />

Accord<strong>in</strong>g to optimization objective function:<br />

T<br />

T<br />

J = E( y Qy) + λ E( u Ru)<br />

= Trace( Q ∑ y + λR<br />

∑u)<br />

.<br />

T<br />

T<br />

= QTrace( C ∑ xC ) + λRTrace( K ∑x<br />

K )<br />

T<br />

T<br />

≤ QTrace( CXC ) + λRTrace( KXK )<br />

T<br />

T<br />

Let CXC < Y , KXK < U , thus, m<strong>in</strong>imiz<strong>in</strong>g<br />

QTrace( Y ) + λRTrace( U ) can ensure J be m<strong>in</strong>imized<br />

too. Object function can be rewritten as<br />

3<br />

MVC<br />

p<br />

m<br />

i i λ j j<br />

i= 1 j=<br />

1<br />

J = ∑qY + ∑ rU . (13)-(17) can be obta<strong>in</strong>ed as<br />

the same as LMI of advanced MVC 3 .<br />

The MVC 3 benchmark curve is the lower limit of the<br />

controller performance. That is, all l<strong>in</strong>ear controllers can<br />

only be located <strong>in</strong> operat<strong>in</strong>g area above the curve.<br />

Compar<strong>in</strong>g actual run-time steady state outputs and<br />

manipulated variables covariance with the MVC 3<br />

benchmark cure, closer distance means better<br />

performance. In practice, a benchmark<br />

3<br />

MVC<br />

p m<br />

i= 1<br />

i i<br />

j=<br />

1<br />

j j<br />

J = ∑qY + ∑ rU can be calculated as λ = 1, then,<br />

judge controller performance by the ratioη which is the<br />

value of benchmark J 3 divided by actual operation<br />

MVC<br />

steady state covariance J arh .η closes to 1 means better<br />

performance.<br />

D. Extended MVC 3 and Inf<strong>in</strong>ite Horizon MPC<br />

• Solution of <strong>in</strong>f<strong>in</strong>ite horizon MPC<br />

For l<strong>in</strong>ear system, solv<strong>in</strong>g <strong>in</strong>f<strong>in</strong>ite horizon MPC is<br />

equivalent to solv<strong>in</strong>g the LQR control problem as follows,<br />

∞<br />

m<strong>in</strong> ∑ x( k) Qx( k) + u ( k) Ru( k)<br />

(19)<br />

u( k ) k = 0<br />

T<br />

x( k + 1) = Ax( k) + Bu( k)<br />

s.t.<br />

.<br />

y( k) = Cx( k)<br />

T<br />

Let<br />

T<br />

p<br />

Q= C DC,( D= ∑ qϕ ϕ ) , and let feedback<br />

i=<br />

1<br />

T<br />

i i i<br />

controller be u( k) = Kx ( k)<br />

, then,<br />

T −1<br />

T<br />

K =− ( B PB + R)<br />

B PA , where,<br />

T T T −1<br />

T<br />

P = A PA − A PB( B PB + R)<br />

B PA + Q .<br />

• LQG control problem<br />

LQG control problem can be described as:<br />

1 T<br />

T<br />

T<br />

m<strong>in</strong> lim ∑ E[ y( k) Qy( k) + u( k) Ru ( k)]<br />

(20)<br />

u T<br />

( k) T→∞ k = 0<br />

x( k + 1) = Ax( k) + Bu( k) + Ew( k)<br />

s.t.<br />

,<br />

y( k) = Cx( k)<br />

where feedback controller can be solved by<br />

T −1<br />

T<br />

K =− ( B PB + R)<br />

B PA , here, PQis , the same as the<br />

solution of <strong>in</strong>f<strong>in</strong>ite horizon MPC. Rewrite the object<br />

function <strong>in</strong> (21) as,<br />

1 T<br />

T<br />

T<br />

J = lim ∑ E[ y( k) Qy( k) + u( k) Ru( k)<br />

T →∞ T k = 0<br />

T<br />

T<br />

= lim E[ y( k) Qy( k) + u( k) Ru( k)]<br />

k→∞<br />

.<br />

= Trace ∑ + ∑<br />

{ Q y R u}<br />

p<br />

m<br />

T<br />

T<br />

∑qiϕi yϕi ∑ rjϕ j uϕ<br />

j<br />

i= 1 j=<br />

1<br />

= ∑ + ∑<br />

• Extended MVC 3 control problem without<br />

constra<strong>in</strong>ts<br />

Extended MVC 3 control problem can be described as:<br />

p m<br />

qY i i+<br />

rU j j<br />

∑ x i= 1 j=<br />

1<br />

m<strong>in</strong> ∑ ∑ (21)<br />

s.t. ( A+ BK) ∑ ( A+ BK) + E∑ w E = ∑<br />

x<br />

T T<br />

i ∑ x ϕi = i, = 1<br />

ϕ C C Y i p<br />

T<br />

T<br />

ϕ jK ∑ x K ϕ j = U j, j = 1… m .<br />

The goal is to get a feedback ga<strong>in</strong> matrix K by m<strong>in</strong>imize<br />

p m<br />

the objective function ∑qY<br />

+ ∑ rU .<br />

T<br />

i i j j<br />

i= 1 j=<br />

1<br />

Assumption 1. R > 0 , Q ≥ 0 .<br />

Assumption 2.The pairs ( A, B ) and ( A, Q)<br />

is stabilizable<br />

and detectable, respectively.<br />

T<br />

Assumption 3.The pair ( A, G∑ w G ) is controllable.<br />

Let hypotheses 1-3 hold; then the solution to of MVC 3<br />

problem as (21) is co<strong>in</strong>cident with the solution of <strong>in</strong>f<strong>in</strong>ite<br />

horizon MPC as (19). Hypotheses 1-2 <strong>in</strong>dicate that the<br />

solutions of problems (19) and (20) are unique and<br />

stabiliz<strong>in</strong>g. Hypotheses 1-3 ensure that the solution of<br />

problem (21) is unique and stabiliz<strong>in</strong>g. From the<br />

construction of problem (20), it is equivalent to problem<br />

(21), <strong>in</strong> the sense that the l<strong>in</strong>ear feedback generated by<br />

T<br />

x<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!