25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1494 JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013<br />

Figure 4. Norm of the weight vector θ<br />

Figure 4 shows the weights is always bounded <strong>in</strong><br />

whole control process though the structure and<br />

parameters of neural network is adjusted on l<strong>in</strong>e. It can be<br />

seen that the actual trajectories converge rapidly to the<br />

desired ones. The computer simulation results show that<br />

the adaptive neural network controller can perform<br />

successful control and achieve desired performance.<br />

VII. CONCLUSIONS<br />

A new adaptive neural network track<strong>in</strong>g control<br />

algorithm is presented for a class of SISO nonaff<strong>in</strong>e<br />

nonl<strong>in</strong>ear systems with zero dynamics <strong>in</strong> this paper. The<br />

method does not assume boundedness on the time<br />

derivative of a control effectiveness term, and only need<br />

sign known and boundedness of the control effectiveness<br />

term. The update law of neural network adjustable<br />

parameters is obta<strong>in</strong>ed by the gradient descent algorithm.<br />

The overall adaptive scheme guarantees that all signals<br />

<strong>in</strong>volved are uniformly ultimately bounded and the output<br />

of the closed-loop system tracks the desired output<br />

trajectory. Simulation results demonstrate the feasibility<br />

of the proposed control scheme.<br />

ACKNOWLEDGMENT<br />

It is a project supported by Prov<strong>in</strong>cial Natural Science<br />

Foundation of Hunan, Ch<strong>in</strong>a (Grant No.09JJ3094), the<br />

Research Foundation of Education Bureau of Hunan<br />

Prov<strong>in</strong>ce, Ch<strong>in</strong>a (Grant No.09B022), the Great Item of<br />

United Prov<strong>in</strong>ces Natural Science Foundation of Hunan,<br />

Ch<strong>in</strong>a (Grant No.09JJ8006), the Planned Science and<br />

Technology Project of Hunan Prov<strong>in</strong>ce, Ch<strong>in</strong>a (Grant<br />

No.2011FJ3126). Supported by the Construct Program of<br />

the Key Discipl<strong>in</strong>e <strong>in</strong> Hunan Prov<strong>in</strong>ce: Control Science<br />

and Eng<strong>in</strong>eer<strong>in</strong>g Science and Technology Innovation<br />

Team of Hunan Prov<strong>in</strong>ce: Complex Network Control.<br />

REFERENCES<br />

[1] Zheng C, Jagannathan S, “Geneeralized Hamilton-jacobibellman<br />

formulation based neural network control of aff<strong>in</strong>e<br />

nonl<strong>in</strong>ear discrete-time systems”, IEEE Transactions on<br />

Neural Networks, vol. 19, pp. 90-106, 2008.<br />

[2] Pang H P, Chen X, “Global robust optimal slid<strong>in</strong>g mode<br />

control for uncerta<strong>in</strong> aff<strong>in</strong>e nonl<strong>in</strong>ear systems”, Journal of<br />

Systems Eng<strong>in</strong>eer<strong>in</strong>g and Electronics, vol. 20, 838-843,<br />

2009.<br />

[3] Hu H, Liu G R, Tang H Z, Guo Peng, “Robust output<br />

track<strong>in</strong>g control for mismatched uncerta<strong>in</strong>ties nonl<strong>in</strong>ear<br />

systems”, Natural Science Journal of Xiangtan University,<br />

vol. 32, pp. 108-111, 2010.<br />

[4] Tie-Shan Li, D. Wang, G. Feng, S. C. Tong, “A DSC<br />

approach to robust adaptive NN track<strong>in</strong>g control for strictfeedback<br />

nonl<strong>in</strong>ear systems”, IEEE Transactions on<br />

systems, man, and cybernetics-part B: cybernetics, vol. 40,<br />

pp. 915-927, 2010.<br />

[5] Salim L, Thierry M G, “Adaptive fuzzy control of a class<br />

of SISO nonaff<strong>in</strong>e nonl<strong>in</strong>ear systems”, Fuzzy Sets and<br />

Systems, vol. 158, pp. 1126-1137, 2007.<br />

[6] Huang H X, Nuan T, “Application of adaptive fuzzy<br />

slid<strong>in</strong>g mode control based on GA <strong>in</strong> position<strong>in</strong>g servo<br />

system of the permanent magnetic l<strong>in</strong>ear motors”, Natural<br />

Science Journal of Xiangtan University, vol. 32, pp. 94-98,<br />

2010.<br />

[7] H. Du, S. S. Ge, J. K. Liu, “Adaptive neural network<br />

output feedback control for a class of non-aff<strong>in</strong>e nonl<strong>in</strong>ear<br />

systems with unmodelled dynamic”, IET Control Theory<br />

& Application, vol. 5, pp. 465-477, 2010.<br />

[8] Bong-Jun Yang, Anthony J. Calise. Adaptive control of a<br />

class of nonaff<strong>in</strong>e systems us<strong>in</strong>g neural networks. IEEE<br />

Transactions on Neural Network, vol. 18, pp. 1149-1159,<br />

2007<br />

[9] Hu H, Liu G R, Liu D B, Guo P, “Output feedback<br />

track<strong>in</strong>g control for a class of uncerta<strong>in</strong> nonl<strong>in</strong>ear MIMO<br />

systems us<strong>in</strong>g neural network”, Control Theory &<br />

Applications, vol. 27, pp. 382-386, 2010<br />

[10] Ge S S, Zhang J, “Neural-network control of nonaff<strong>in</strong>e<br />

nonl<strong>in</strong>ear system with zero dynamics by state and output<br />

feedback”, IEEE Transaction on neural networks, vol. 14,<br />

pp. 900-918, 2003<br />

[11] Qiu J B, Feng G, Gao H J, “Asynchronous Outputfeedback<br />

control of network nonl<strong>in</strong>ear systems with<br />

multiple packet dropouts: T-S fuzzy aff<strong>in</strong>e model-based<br />

approach”, IEEE Transaction on Fuzzy Systems, vol. 19,<br />

pp. 1014-1030, 2011<br />

[12] L<strong>in</strong> C.M, Chen T.Y, “Self-organiz<strong>in</strong>g CMAC control for a<br />

class of MIMO uncerta<strong>in</strong> nonl<strong>in</strong>ear systems”,.IEEE<br />

Transaction on neural networks, vol. 20, pp. 1377-1384,<br />

2009.<br />

[13] S. Blazic, I. Skrjanc, D. Matko, “Globally stable direct<br />

fuzzy model reference adaptive control”, Fuzzy Sets and<br />

Systems, vol. 139, pp. 3-33, 2003.<br />

[14] Wang W Y, Chien Y S, Lee T T., “Observer-based T-S<br />

fuzzy control for a class of general nonaff<strong>in</strong>e nonl<strong>in</strong>ear<br />

systems us<strong>in</strong>g generalized projecton-update laws”, IEEE<br />

Transactions on fuzzy systems, vol. 19, pp. 493-503, 2011.<br />

[15] Jianm<strong>in</strong>g Lian, Yonggon Lee, Stanislaw H. Zak, “Variable<br />

neural direct adaptive robust control of uncerta<strong>in</strong> systems”,<br />

IEEE Transactions on Automatic Control, vol. 53, 11, pp.<br />

2658-2664, 2008.<br />

[16] S.Labiod, M.S.Boucherit, “Direct stable fuzzy adaptive<br />

control of a class of MIMO nonl<strong>in</strong>ear systems”, Fuzzy sets<br />

and systems, vol. 151, pp. 59-77, 2005.<br />

[17] N. Golea, A. Golea, K. benmahammed, “Stable <strong>in</strong>direct<br />

fuzzy adaptive control”, Fuzzy sets and systems, vol1.137,<br />

pp. 353-366, 2003.<br />

[18] J<strong>in</strong>peng Yu, B<strong>in</strong>g Chen, Haisheng Yu, “Position track<strong>in</strong>g<br />

control of <strong>in</strong>duction motors via adaptive fuzzy<br />

backstepp<strong>in</strong>g” Energy Conversion and Management, vol51,<br />

pp. 2345-2352, 2010.<br />

[19] Karimi B. Menhaj M B, Karimi G M, Saboori I,<br />

“Decentralized adaptive control of large-scale aff<strong>in</strong>e and<br />

nonaff<strong>in</strong>e nonl<strong>in</strong>ear systems”, IEEE Transactions on<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!