25.01.2015 Views

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

Download Full Issue in PDF - Academy Publisher

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JOURNAL OF COMPUTERS, VOL. 8, NO. 6, JUNE 2013 1585<br />

application, more accurate simulation not starts from S,<br />

but log-price ln S . Monte Carlo simulation steps:<br />

(1) To generate sample paths for underly<strong>in</strong>g asset, given<br />

the <strong>in</strong>itial value<br />

i i i i<br />

S = t 1<br />

S + t<br />

μiS Δ t<br />

t + +<br />

σiS Δ t<br />

tεt<br />

(2)To calculate option price of each sample path.<br />

(3) To average option price for each sample path.<br />

IV.EMPIRICAL EXAMPLE<br />

In order to illustrate the features and applications of<br />

this model, we make a numerical example. For simple,<br />

we only consider two stocks. And there is a call and a put<br />

option based on each stock. Suppose that the <strong>in</strong>vestment<br />

horizon is T = 1year, <strong>in</strong>clud<strong>in</strong>g 20 trad<strong>in</strong>g days <strong>in</strong> each<br />

month, so there is 240 trad<strong>in</strong>g days <strong>in</strong> total. To divide<br />

T by daily, that is Δ t =1day, equals to 1 year. The<br />

240<br />

price of each stock is supposed to follow log-normal<br />

distribution, then the price of stock i,( i = 1,2) <strong>in</strong><br />

t + 1day is:<br />

i i i i<br />

S S μ S t σ S tε<br />

ε ∼ N 0,1<br />

= + Δ + Δ , ( )<br />

+ t<br />

t 1 t i t i t t<br />

i i i<br />

Generate a path S 0<br />

, S 1<br />

S<br />

240<br />

for stock i by Monte<br />

Carlo method.<br />

Each stock will only correspond to a European call<br />

option and a European put option, asset specific<br />

parameters are as follows:<br />

μ1 = 11%, σ1 = 26.86%; μ2 = 8.05%, σ2<br />

= 16.3%<br />

Other parameters are as shown <strong>in</strong> the follow<strong>in</strong>g.<br />

The k<strong>in</strong>d of option, underly<strong>in</strong>g, market price, option<br />

price, time and strike price respectively are:<br />

For call option C 1<br />

whose underl<strong>in</strong>g is S with <strong>in</strong>itial<br />

1<br />

value S 1 ( 0 ) =15.59, the option premium C 1 ( 0 ) =2.17,<br />

the strike price is K<br />

11<br />

=14.5, the expired time is 6 month.<br />

For call option P 1<br />

whose underl<strong>in</strong>g is S 1<br />

with <strong>in</strong>itial<br />

P =1.87,<br />

value S ( ) =15.59, the option premium ( )<br />

1 0<br />

1 0<br />

the strike price is K 12<br />

=16.5, the expired time is 12<br />

month.<br />

For call option C whose underl<strong>in</strong>g is<br />

2<br />

S 1<br />

with <strong>in</strong>itial<br />

value ( ) 2<br />

0<br />

C<br />

2<br />

0 =1.32,<br />

the strike price is K =13, the expired time is 3 month.<br />

21<br />

For call option P 2<br />

whose underl<strong>in</strong>g is S 2<br />

with <strong>in</strong>itial<br />

P =1.48 ,<br />

S =13.71, the option premium ( )<br />

value S ( ) =13.71, the option premium ( )<br />

2<br />

0<br />

2<br />

0<br />

the strike price is K =15, the expired time is 9 month.<br />

22<br />

If the option j based on stock i is exercised on the<br />

l ( ≤ 240)<br />

day, the option value is<br />

i i i i<br />

( Srr<br />

01 2<br />

rl<br />

− Kij)<br />

max 0,<br />

,and <strong>in</strong> the rest of <strong>in</strong>vestment<br />

horizon, that is, <strong>in</strong> the follow<strong>in</strong>g 240 − l days,the value<br />

is treated as risk free asset,so the total value of the<br />

option <strong>in</strong> the <strong>in</strong>vestment horizon is:<br />

i i i i<br />

r( 240 −l)<br />

/ 365<br />

max ( 0, Srr<br />

0 1 2rl<br />

− Kij) e , r=<br />

5% is the risk<br />

free <strong>in</strong>terest rate.<br />

The European call option price before expiration day,<br />

for example, on the v− th day is<br />

i i i i −r l−v i<br />

max 0, Srr r − K e − c , v≤<br />

l<br />

( )<br />

( l ij) 0 1 2 0<br />

i<br />

where C is the option current price (option premium)<br />

0<br />

based on stock i.<br />

If v> l , then on the v− th day, the call option price<br />

is<br />

r<br />

⎛ ⎞<br />

365<br />

i i i i<br />

⎜e −1⎟max( 0, S0r1r2<br />

rl<br />

−Kij)<br />

⎝ ⎠<br />

Suppose that the portfolio assets real returns are<br />

μ = μ , μ , r 1 , r 1 , r<br />

2 , r<br />

2 , and the means of samples<br />

( 1 2 c p c p )<br />

return are μ ( μ′ )<br />

1 1 2 2<br />

1<br />

, μ ′<br />

2<br />

, r ′<br />

c<br />

, r ′<br />

p<br />

, r ′<br />

c<br />

, r ′<br />

p<br />

′ = with <strong>in</strong>vestment<br />

share x = ( x , x , w , w , w , w ) . We construct the model:<br />

1 2 1 2 3 4<br />

μ x μ x r w r w r w r w<br />

1 1 2 1<br />

max<br />

1 1+ 2 2+ c 1+ p 2+ c 3+<br />

p 4<br />

⎧<br />

1 1 2 1<br />

μ′ 1<br />

x1+ μ ′<br />

2<br />

x2 + r ′<br />

c<br />

w1+ r ′<br />

p<br />

w2 + r ′<br />

c<br />

w3+ r ′<br />

p<br />

w4<br />

≥0.001<br />

⎪<br />

−1<br />

⎪<br />

( I − L)<br />

wxβγ<br />

= C μa<br />

⎪<br />

−1 −1 −1 2<br />

a= eC ′ μ, b= μ′ C μ, c= eC ′ e,<br />

d = bc−a<br />

⎪<br />

⎪ ⎛b−aμ<br />

⎞ ⎛cμ−a⎞<br />

−1<br />

⎪ μa = ⎜ ⎟, μc = ⎜ ⎟,<br />

L=<br />

C μcμ′<br />

⎨ ⎝ d ⎠ ⎝ d ⎠<br />

⎪x1+ x2 + w1+ w2 + w3+ w4<br />

= 1<br />

⎪<br />

⎪μ′ x + μ ′ x + r ′ w + r ′ w + r ′ w + r ′ w −∑<br />

sm ≥r<br />

⎪<br />

⎪mi<br />

≥ xi<br />

⎪<br />

⎩si<br />

≥ 0<br />

1 1 2 1<br />

1 1 2 2 c 1 p 2 c 3 p 4 i i p<br />

where C is the covariance matrix between the assets ,<br />

the m<strong>in</strong>imum return for an <strong>in</strong>vestor is 2%.<br />

By solv<strong>in</strong>g the above model, we obta<strong>in</strong> the optimal<br />

portfolio is (0.4,-0.04,-0.1,-0.3,-0.16), the objective<br />

is0.00682456. If it is set s<br />

i<br />

= 0 , that is there is no robust<br />

of return mean, the result is 0.0070175439. It is easy to<br />

understand that under robust, <strong>in</strong>vestment is more<br />

conservative. Because the advantage of comb<strong>in</strong><strong>in</strong>g option<br />

<strong>in</strong> portfolio is option could hedg<strong>in</strong>g with risk. In order to<br />

test it, we change the variance from small to large, for<br />

example, supposeσ<br />

1<br />

= 30%; σ 2<br />

= 25% , we f<strong>in</strong>d that the<br />

objective is 0.0052984, if there is without options, the<br />

objective is 0.000215. That is, options <strong>in</strong> portfolio could<br />

hedge risks.<br />

V. CONCLUSION<br />

This paper extents the general portfolio model <strong>in</strong> two<br />

aspects. The first is to comb<strong>in</strong>ed option <strong>in</strong> the portfolio<br />

could hedge the risk, and the options can also considered<br />

as an asset <strong>in</strong> the portfolio, extend<strong>in</strong>g the general<br />

model.And we use Monte Carlo method to simulate the<br />

© 2013 ACADEMY PUBLISHER

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!