20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

100that the genes for AOH polyketide synthase and AOH-O-methyltransferase are<strong>in</strong> close proximity. Therefore identify<strong>in</strong>g the alternariol-O-methyltransferasewill also reveal the responsible polyketide synthetase.Putative methyltransferases were also identified by BLAST-analysis <strong>in</strong> thegenome of the close relative A. brassicicola and the sequences were usedto clone several SAM dependent methyltransferases of Alternariaalternata. Three partial and one total sequence were cloned.With the active expression of the identified genes be<strong>in</strong>g not easy, thealternariol-O-methyltransferase of Alternaria alternata was alsocharacterized <strong>in</strong> crude extracts and partially purified. An SAM dependentactivity-test was developed to identify the enzyme. The products wereanalysed by HPLC. With the N-term<strong>in</strong>al sequence of the enzyme it shouldbe possible to determ<strong>in</strong>e the gene.1) Gatenbeck and Hermodsson (1965): Enzymic Sythesis of Aromatic Product Alternariol2) St<strong>in</strong>son and Moreau (1986): Partial Purification and some Properties of an Alternariol-o-Methyltransferase fromAlternaria tenuis.3)http://www.vbi.vt.edu/archive/pdf/public_relations/annual_report/2009/ar2009-sci-07-lawrence.pdf4) Fetzner R., Lawrence C., Fischer R. (2011). Molecular analysis of secondary metabolite biosynthesis <strong>in</strong>Alternaria alternata. Biospektrum Special 2011: 128.5) Keller NP., Hohn TM. (1997). Metabolic pathway gene clusters <strong>in</strong> filamentous fungi. Fungal Geneticsand Biology 21: 17-29.MEP034The friulimic<strong>in</strong> producer Act<strong>in</strong>oplanes friuliensisN. Fischer*, N. Wagner, R. Biener, D. SchwartzUniversity of Applied Sciences Essl<strong>in</strong>gen, Biotechnology, Essl<strong>in</strong>gen,GermanyFriulimic<strong>in</strong>, a lipopeptide antibiotic produced by the rare act<strong>in</strong>omyceteAct<strong>in</strong>oplanes friuliensis, is active aga<strong>in</strong>st a broad range of multiresistantgram-positive bacteria such as methicill<strong>in</strong>-resistant Enterococcus sp.andStaphylococcus aureus (MRE, MRSA) stra<strong>in</strong>s.The complete biosynthetic gene cluster was characterized by sequenceanalysis and four different regulatory genes (regA, regB, regC and regD)were identified with<strong>in</strong> the cluster (Müller et al., 2007).Knockout-mutants miss<strong>in</strong>g the regulatory genes regC/D showed nonproductionof friulimic<strong>in</strong> as well as deficiency <strong>in</strong> carotenoid pigmentsynthesis which <strong>in</strong>dicates a pleiotropic mechanism of action of theencoded bacterial two component system.An <strong>in</strong> silico analysis of the A. friuliensis genome revealed the presence ofseveral fatty acid biosynthesis genes outside of the known biosyntheticgene cluster, that might be <strong>in</strong>volved <strong>in</strong> biosynthesis of the lipid part of theantibiotic. Among others three putative FabH genes (-Ketoacyl-AcylCarrier Prote<strong>in</strong> Synthase III) could be identified.To verify the role of these genes <strong>in</strong> antibiotic biosynthesis transcription analysisby RT Realtime-PCR as well as gene <strong>in</strong>activation experiments are carried out.Moreover three so far unknown secondary metabolite NRPS- and one PKSgenecluster as well as genes responsible for carotenoid biosynthesis andflagella formation could be identified and are under further <strong>in</strong>vestigation.To study the formation of spore flagella the growth conditions forsporangia formation and sporulation were determ<strong>in</strong>ed and analyzed byscann<strong>in</strong>g electron microscopy and RT-Realtime PCR. Additionallydifferent methods for enrichment of spores were tested to improve andfacilitate the <strong>in</strong>tergeneric conjugation procedure for A. friuliensis.MEP035Inhibition of quorum sens<strong>in</strong>g <strong>in</strong> Gram-Negative bacteria by astaphylococcal compoundY.-Y. Chu* 1 , M. Nega 1 , M. Wölfle 2 , M.T. Nguyen 1 , S. Grond 2 , F. Götz 11 Interfakultäres Institut für Mikrobiologie und Infektionsmediz<strong>in</strong>,Department of Microbial Genetics, Tueb<strong>in</strong>gen, Germany2 Institut für Organische Chemie , Tueb<strong>in</strong>gen, GermanyBacteria use signal molecules to regulate population density <strong>in</strong> a process ofbacterial communication called quorum sens<strong>in</strong>g. This process plays criticalroles <strong>in</strong> regulat<strong>in</strong>g various physiological activities, <strong>in</strong>clud<strong>in</strong>g production ofantibiotics, secretion of virulence factors, formation of biofilms, swarm<strong>in</strong>gmotility, biolum<strong>in</strong>escence, sporulation as well as symbiosis. Similarly, it isfound that various bacteria are able to secrete compounds for <strong>in</strong>hibit<strong>in</strong>g,<strong>in</strong>activat<strong>in</strong>g or stimulat<strong>in</strong>g quorum sens<strong>in</strong>g signals <strong>in</strong> other bacteria. In ourprevious study on co<strong>in</strong>fection ofStaphylococcusandPseudomonasaerug<strong>in</strong>osa, we observed thatP. aerug<strong>in</strong>osacould repress the growth ofpathogenic staphylococcalspeciesbut not of nonpathogenicstaphylococcalspeciesby respiratory <strong>in</strong>hibitors [1]. Meanwhile, to oursurprise, some stra<strong>in</strong>s of the nonpathogenic staphylococcalspeciesexhibitunknown compound X to <strong>in</strong>terrupt the function of quorum sens<strong>in</strong>gcontrolledfactors <strong>in</strong> gram-negative bacteria, such as the red prodigios<strong>in</strong>pigment <strong>in</strong>Serratia marcescens, the blue-green pyocyan<strong>in</strong><strong>in</strong>P.aerug<strong>in</strong>osaand biolum<strong>in</strong>escence <strong>in</strong>Vibrio harveyi.Physical analysisus<strong>in</strong>g XAD-16 res<strong>in</strong> and dialysis membrane demonstrated that themolecular weight of compound X is below 2 kDa. Moreover, compound Xresists alkal<strong>in</strong>e and acid pH, high temperature and prote<strong>in</strong>ase K treatment,which might exclude compound X as a normal peptide. However, themechanism of compound X expression is still unknown s<strong>in</strong>ce it is<strong>in</strong>dependent of the growth temperature, and oxygen concentration <strong>in</strong> themedium. In further study, not only purification and identification of thecompound X us<strong>in</strong>g high-performance liquid chromatography (HPLC) andmass spectrometry (MS) are essential. It also needs to <strong>in</strong>dentify thecorrespond<strong>in</strong>g genes by transposon mutagenesis and clon<strong>in</strong>g randomchromosomal DNA of compound produc<strong>in</strong>g staphylococcal sta<strong>in</strong> <strong>in</strong>to anonproduc<strong>in</strong>g stra<strong>in</strong>.In the end, <strong>in</strong>vestigation of how compound X disruptsthe quorum sens<strong>in</strong>g signal<strong>in</strong>g system <strong>in</strong> gram-negative bacteria would bean important and <strong>in</strong>terest<strong>in</strong>g issue for new generation of antibiotics.1. Voggu L, Schlag S, Biswas R, Rosenste<strong>in</strong> R, Rausch C, Götz F.,J Bacteriol,2006,188(23),8079-86.MEP036Effect of galliderm<strong>in</strong> on biofilm of Staphylococcus aureus andStaphylococcus epidermidisJ. Sais<strong>in</strong>g* 1,2 , L. Dube 1 , A.-K. Ziebandt 1 , M. Nega 1 , S. Voravuthikunchai 2 ,F. Götz 11 University of Tueb<strong>in</strong>gen, Microbial Genetics, Tueb<strong>in</strong>gen, Germany2 Pr<strong>in</strong>ce of Songkla University, Microbiology, Songkhla, ThailandStaphylococcus aureus and S. epidermidis are widely <strong>in</strong>volved <strong>in</strong> m<strong>in</strong>or tosevere <strong>in</strong>fection. A major problem is the aris<strong>in</strong>g of highly virulent andmultiple resistant clones and the manifestation of persistent <strong>in</strong>fections dueto biofilm-form<strong>in</strong>g stra<strong>in</strong>s. Once a biofilm is formed dur<strong>in</strong>g <strong>in</strong>fection,particularly implant-associated <strong>in</strong>fections, therapy is extremely difficultdue to the antibiotic resistance <strong>in</strong> a biofilm community. The objective ofthis study was to <strong>in</strong>vestigate the activity of galliderm<strong>in</strong> with respect toprevent biofilm formation and to kill staphylococci once a biofilm hasbeen formed. For planktonic grown S. aureus and S. epidermidis them<strong>in</strong>imal <strong>in</strong>hibitory concentration (MIC) and m<strong>in</strong>imal bactericidalconcentration (MBC) values of galliderm<strong>in</strong> was <strong>in</strong> the order of 4-8 g/ml.This galliderm<strong>in</strong> concentrat<strong>in</strong>g is also sufficient to prevent biofilmformationof both species representatives. Also, the viability of 24 h and 5-day staphylococcal biofilm grown cells is significantly decreased aftertreated with galliderm<strong>in</strong>. We also <strong>in</strong>vestigated the effect of galliderm<strong>in</strong> onthe expression of biofilm-mediat<strong>in</strong>g genes such as major autolys<strong>in</strong> (atl)and PIA-synthesiz<strong>in</strong>g <strong>in</strong>tercellular adhes<strong>in</strong> (ica). Northern blot analysisrevealed that <strong>in</strong> the presence of galliderm<strong>in</strong> the correspond<strong>in</strong>g transcriptswere significantly decreased. Our f<strong>in</strong>d<strong>in</strong>g <strong>in</strong>dicates that galliderm<strong>in</strong>efficiently prevents biofilm formation <strong>in</strong> staphylococci and represents agood candidate for treatment for appropriate therapy.MEP037the cyanobacterial tox<strong>in</strong> microcyst<strong>in</strong> b<strong>in</strong>ds to prote<strong>in</strong>s <strong>in</strong>vivo and plays an essential role <strong>in</strong> oxidative stress response <strong>in</strong>Microcystis aerug<strong>in</strong>osaS. Meissner* 1 , Y. Zilliges 2 , J.-C. Kehr 1 , M. Hagemann 3 , E. Dittmann 11 University of Potsdam, Department of Microbiology, Potsdam-Golm,Germany2 Humboldt University, Department of Molecular Ecology, Berl<strong>in</strong>, Germany3 University of Rostock, Department of Plant Physiology, Rostock, GermanyCyanobacteria produce a variety of secondary metabolites with yetunknown functions. Microcyst<strong>in</strong> is one of the most <strong>in</strong>tensely studiedsecondary metabolites due to its regular <strong>in</strong>volvement <strong>in</strong> toxic freshwatercyanobacterial mass developments. Here we describe a new function ofmicrocyst<strong>in</strong> act<strong>in</strong>g on prote<strong>in</strong>s of Microcystis aerug<strong>in</strong>osa PCC 7806,which <strong>in</strong>dicates a putative <strong>in</strong>volvement <strong>in</strong> physiological processes of theproduc<strong>in</strong>g organism.The phenotype of the microcyst<strong>in</strong> deficient mcyB mutant shows<strong>in</strong>creased susceptibility towards high light conditions of above 300 E/ m 2· s when compared to the microcyst<strong>in</strong> produc<strong>in</strong>g wild type. Microcyst<strong>in</strong>covalently b<strong>in</strong>ds to Microcystis prote<strong>in</strong>s <strong>in</strong> vivo and exposition to highlight strongly facilitates the b<strong>in</strong>d<strong>in</strong>g. In vitro, block<strong>in</strong>g of free sulfhydrylgroups of prote<strong>in</strong>s <strong>in</strong> mcyB mutant extracts disables the b<strong>in</strong>d<strong>in</strong>g.Accord<strong>in</strong>gly, microcyst<strong>in</strong> most likely <strong>in</strong>teracts with cyste<strong>in</strong>esof Microcystis prote<strong>in</strong>s to form a stable thioether bond. One of the mostprom<strong>in</strong>ent b<strong>in</strong>d<strong>in</strong>g partners of microcyst<strong>in</strong> is the large subunit of thecarbon fix<strong>in</strong>g enzyme RubisCO (RbcL). Interest<strong>in</strong>gly, the b<strong>in</strong>d<strong>in</strong>g ofmicrocyst<strong>in</strong> to RbcL renders the enzyme less susceptible towardsproteolysis by the ser<strong>in</strong>e protease subtilis<strong>in</strong>. Comparative proteomicstudies revealed altered accumulation patterns of several Calv<strong>in</strong> cycleenzymes <strong>in</strong>clud<strong>in</strong>g RubisCO as a consequence to the loss of microcyst<strong>in</strong>production.Altogether the f<strong>in</strong>d<strong>in</strong>gs outl<strong>in</strong>ed above strongly suggest an importantphysiological role of microcyst<strong>in</strong> with regard to modify<strong>in</strong>g the proteomeof Microcystis and <strong>in</strong>creas<strong>in</strong>g the capability of the cells to handleconditions trigger<strong>in</strong>g oxidative stress.Zilliges Y, Kehr J-C, Meissner S, Ishida K, Mikkat S, et al. (2011) The Cyanobacterial Hepatotox<strong>in</strong>Microcyst<strong>in</strong> B<strong>in</strong>ds to Prote<strong>in</strong>s and Increases the Fitness of Microcystis under Oxidative StressConditions. PLoS ONE 6(3): e17615. doi:10.1371/journal.pone.0017615BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!