20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

206Ser46~P complex. Additionally, B. subtilis possesses the carbon-fluxregulator Crh. Like HPr, Crh can be phoshorylated at the regulatory siteSer~46. However, the <strong>in</strong>fluence of Crh on CCR is weak. Recent studiesshowed that Crh senses the metabolic state of B. subtilis, therebycontroll<strong>in</strong>g flux through the toxic methylglyoxal pathway (2).Different carbohydrates form a hierarchy <strong>in</strong> their ability to triggerphosphorylation of HPr and Crh by HPrK/P. Upon utilization of preferredcarbon sources HPr and Crh are predom<strong>in</strong>antly phosphorylated. Incontrast, the non-phosphorylated forms prevail <strong>in</strong> the presence ofsecondary substrates (3, 4).Here we are focus<strong>in</strong>g on conditions lead<strong>in</strong>g to dephosphorylation of HPrand Crh at Ser~46. Both, Crh and HPr accumulate <strong>in</strong> their nonphosphorylatedforms upon entry <strong>in</strong> the stationary phase. We demonstratethat phosphorylation as well as dephosphorylation of Crh is carried out bythe s<strong>in</strong>gle enzyme, HPrK/P. In contrast, it turned out thatdephosphorylation of HPr depends on a different enzyme, namely aphosphatase of the PP2C family. The physiological consequences of the<strong>in</strong>volvement of this phosphatase are discussed.(1) Görke, B. and J. Stülke (2008). Carbon catabolite repression <strong>in</strong> bacteria: many ways to make themost out of nutrients.Nature Reviews Microbiology6, 613-624.(2) Landmann, J.J., Busse, R.A., Latz, J.H., S<strong>in</strong>gh, K.D., Stülke, J. and B. Görke (2011). Crh, theparaloque of the phosphocarrier prote<strong>in</strong> HPr, controls the methylglyoxal bypass of glycolysis <strong>in</strong>Bacillus subtilis.Molecular Microbiology 82(3), 770-787.(3) S<strong>in</strong>gh, K.D., Schmalisch, M.H., Stülke, J. and B. Görke (2008). Carbon catabolite repression <strong>in</strong>Bacillus subtilis: Quantitative analysis of repression exerted by different carbon sources.Journal ofBacteriology 190, 7275-7248.(4) Landmann, J.J., Werner, S., Hillen, W., Stülke, J. and B. Görke (2011). Carbon source control ofthe phosphorylation state of the Bacillus subtilis carbon-flux regulator Crh <strong>in</strong> vivo.FEMS MicrobiolLetters.RSP055Novel structures of PII signal transduction prote<strong>in</strong>s fromoxygenic phototropic organismsV.R. Chellamuthu* 1,2 , M. Hartmann 2 , K. Forchhammer 11 University of Tueb<strong>in</strong>gen, Department of Microbiology/ OrganismicInteractions, Tueb<strong>in</strong>gen, Germany2 MPI for Developmental Biology, Prote<strong>in</strong> Evolution, Tueb<strong>in</strong>gen, GermanyPII prote<strong>in</strong>s constitute one of the most widely distributed families of signaltransduction prote<strong>in</strong>s, whose representatives are present <strong>in</strong> archaea,bacteria and plants. They play a pivotal role to control the nitrogenmetabolism <strong>in</strong> response to the central metabolites ATP, ADP and 2-oxoglutarate (2-OG). These signals from energy status, carbon andnitrogen metabolism are <strong>in</strong>tegrated and transmitted to the regulatorytargets (key enzymes, transporters and transcription factors). In oxygenicphototrophic organisms, from cyanobacteria to higher plants, thecontroll<strong>in</strong>g enzyme of arg<strong>in</strong><strong>in</strong>e synthesis, N-acetyl-glutamate k<strong>in</strong>ase(NAGK), is a major PII target, whose activity responds to the cellular 2-OG and energy status via PII signall<strong>in</strong>g. Novel crystal structures of PIIsignal transduction prote<strong>in</strong>s from oxygenic phototrophs <strong>in</strong> the presence ofsignal<strong>in</strong>g metabolites and <strong>in</strong> complex with NAGK give deeper <strong>in</strong>sights<strong>in</strong>to their control mechanism and sheds light on the evolutionaryadaptation of PII signal transduction.RSP056Hierarchy of Selenoprote<strong>in</strong> Gene Expression <strong>in</strong> the ArchaeonMethanococcus maripaludisM. Rother* 1 , T. Stock 2 , M. Selzer 3 , S. Connery 4 , D. Seyhan 2 , A. Resch 51 Technische Universität Dresden, Institut für Mikrobiologie, Dresden, Germany2 Institute for Molecular Biosciences, Goethe-University Frankfurt, Frankfurt,Germany3 Universität Bayreuth, Department of Ecological Microbiology, Bayreuth,Germany4 School of Crystallography, Birbeck College London, London, United K<strong>in</strong>gdom5 Deparment of Microbiology, Immunobiology and Genetics, University ofVienna, Vienna, AustriaProte<strong>in</strong>s conta<strong>in</strong><strong>in</strong>g selenocyste<strong>in</strong>e are found <strong>in</strong> members of all threedoma<strong>in</strong>s of life, Bacteria, Eukarya and Archaea. A dedicated tRNA(tRNA sec ) serves as a scaffold for selenocyste<strong>in</strong>e synthesis. However,sequence and secondary structures differ <strong>in</strong> tRNA sec from the differentdoma<strong>in</strong>s. An Escherichia coli stra<strong>in</strong> lack<strong>in</strong>g the gene for tRNA sec couldonly be complemented with the homolog from Methanococcus maripaludiswhen a s<strong>in</strong>gle base <strong>in</strong> the anticodon loop was exchanged demonstrat<strong>in</strong>gthat this base is a crucial determ<strong>in</strong>ant for archaeal tRNA sec to function <strong>in</strong> E.coli. Complementation <strong>in</strong> trans of M. maripaludis JJ mutants lack<strong>in</strong>gtRNA sec , O-phosphoseryl-tRNA sec k<strong>in</strong>ase, or O-phosphoseryltRNAsec :selenocyste<strong>in</strong>e synthase with the correspond<strong>in</strong>g genes from M.maripaludis S2 restored the mutant’s ability to synthesize selenoprote<strong>in</strong>s.However, only partial restoration of the wild-type selenoproteome wasobserved as only selenocyste<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g formate dehydrogenase wassynthesized. Quantification of transcripts showed that disrupt<strong>in</strong>g thepathway of selenocyste<strong>in</strong>e synthesis leads to down-regulation ofselenoprote<strong>in</strong> gene expression, concomitant with up-regulation of aselenium-<strong>in</strong>dependent backup system, which is not re-adjusted uponcomplementation. This transcriptional arrest was <strong>in</strong>dependent ofselenophosphate but depended on the “history” of the mutants and was<strong>in</strong>heritable, which suggests that a stable genetic switch may cause theresult<strong>in</strong>g hierarchy of selenoprote<strong>in</strong>s synthesized.RSV1-FGSignal recognition and transmission by the CpxAR-twocomponent systemS. Hunke* 1 , V.S. Müller 1 , K. Tschauner 1 , P. Scheerer 1,21 Universität Osnabrück, Molekulare Mikrobiologie, Osnabrück, Germany2 Charité - Universitätsmediz<strong>in</strong> Berl<strong>in</strong>, Institut für Mediz<strong>in</strong>ische Physik undBiophysik (CC2), Berl<strong>in</strong>, GermanyTwo-component systems (TCS) are the predom<strong>in</strong>ant signall<strong>in</strong>g systemsallow<strong>in</strong>g bacteria to communicate with their environment [1]. In general, aTCS comprises of a sensor k<strong>in</strong>ase (SK) and a response regulator (RR).Upon stimulation the SK is autophosphorylated and transfers thephosphoryl group to the RR which acts now a transcription regulator oftarget genes. To balance the response some SKs also dephosphorylate thephosphorylated RR. However, the mechanistic details <strong>in</strong> signal recognitionand transmission by TCS are still only poorly understood.The Cpx-TCS is a well established model ubiquitous <strong>in</strong> Gram-negativebacteria that <strong>in</strong>tegrates a broad variety of different signals <strong>in</strong>clud<strong>in</strong>g saltstress, pH stress, lipids and misfolded prote<strong>in</strong>s that cause envelope stress[2]. The Cpx-TCS is made up of the SK CpxA, the RR CpxR and theaccessory prote<strong>in</strong> CpxP. CpxP is known to shut off the Cpx-TCS by<strong>in</strong>hibit<strong>in</strong>g CpxA autophosphorylation [3] and to promote degradation ofmisfolded pilus subunits [4]. Recent structural and functional studiesprovide first <strong>in</strong>sight <strong>in</strong>to how CpxP <strong>in</strong>hibits CpxA and serves as sensor formisfolded pilus subunits, pH and salt [5]. Now, we have used membrane-SPINE [6] to demonstrate not only the direct <strong>in</strong>teraction between CpxPand CpxA under non-stress conditions but also the release of CpxP fromCpxA under certa<strong>in</strong> stress conditions <strong>in</strong> vivo.Other signals are CpxP-<strong>in</strong>dependent recognized by CpxA as a misfoldedvariant of the maltose b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> that activates phophotransfer toCpxR [2] and lipids that <strong>in</strong>hibit dephosphorylation of activated CpxR.Hence, <strong>in</strong>dependent entry po<strong>in</strong>ts for the Cpx-TCS exist that result <strong>in</strong>specific activities of CpxA. In addition, we will present a structurehomology model of the catalytic doma<strong>in</strong> of CpxA <strong>in</strong> complex with CpxRthat we have proved for critical residues <strong>in</strong> the <strong>in</strong>terface between bothprote<strong>in</strong>s <strong>in</strong> vivo. Thus, we have now the system and methods <strong>in</strong> hand toga<strong>in</strong> a deeper understand<strong>in</strong>g of signal recognition and transmission overthe membrane <strong>in</strong> a TCS <strong>in</strong> general.1. A.M. Stock, V.L. Rob<strong>in</strong>son and P.N. Goudreau, Annu. Rev. Biochem.69(2000), p. 183.2. S. Hunke, R. Keller and V.S. Müller, FEMS Microbiol. Lett (2011) doi: 10.1111/j.1574-6968.2011.02436.x.3. R. Fleischer, K. Jung, R. Heermann and S. Hunke, J. Biol. Chem.282(2007), p. 8583.4. D.D. Isaac, J.S. Pickner, S.J. Hultgren and T.J. Silhavy, PNAS102(2005), p. 17775.5. X. Zhou, R. Keller, Volkmer, R., Krauss, N., Scheerer, P. and S. Hunke, J. Biol. Chem.286(2011), p.9805.6. V.S. Müller, P.R. Jungblut, T.F. Meyer and S. Hunke, Proteomics11(2011), p. 2124.RSV2-FGMechanism of signal transfer by the tandem hamp doma<strong>in</strong>from Natronomonas pharaonisJ. Natarajan*, J. SchultzUniversity of Tüb<strong>in</strong>gen, Department of Pharmaceutical Biochemistry,Tüb<strong>in</strong>gen, GermanyChemotaxis and phototaxis <strong>in</strong> bacteria share most steps <strong>in</strong> signaltransduc<strong>in</strong>g mechanisms. External stimuli are converted via a HAMPdoma<strong>in</strong> (Histid<strong>in</strong>e k<strong>in</strong>ases, Adenylyl cyclases [ACs], Methyl-accept<strong>in</strong>gchemotaxis prote<strong>in</strong>s [MCP] and Phosphatases) <strong>in</strong>to a conformationalresponse of the output mach<strong>in</strong>ery, mostly k<strong>in</strong>ases or k<strong>in</strong>ase control unitswhich imp<strong>in</strong>ge on the flagellar motor to affect swimm<strong>in</strong>g behaviour.Hitherto, more than 12,000 HAMP doma<strong>in</strong>s are annotated <strong>in</strong> the EMBLdata bank; only a few have been functionally characterized (1).The phototransducer from Natronomonas pharaonis (NpHtrII) belongs tothe group of MCP´s. It receives its signal from the light excited sensoryrhodops<strong>in</strong> (SR II) which forms a complex with the transducer Htr II (2).SRII <strong>in</strong>itiates a slid<strong>in</strong>g of the second transmembrane helix of HtrII (3)result<strong>in</strong>g <strong>in</strong> a conformational change <strong>in</strong> the HAMP doma<strong>in</strong> (rotation andtranslation) which sets off the signall<strong>in</strong>g cascade. HtrII, unlike many of thewell studied MCP’s has a tandem HAMP doma<strong>in</strong> (HAMP HtrI and II).We study signal conversion through such a tandem HAMP doma<strong>in</strong> bygenerat<strong>in</strong>g chimeras with Tsr, the E. coli ser<strong>in</strong>e receptor, and themycobacterial AC Rv3645 as a reporter enzyme. Such chimeras have beenshown to be regulated by ser<strong>in</strong>e us<strong>in</strong>g the HAMP doma<strong>in</strong> of either Tsr orof Rv3645 (4). After sequence comparisons with positively operat<strong>in</strong>gHAMP doma<strong>in</strong>s two chimeras with mutated Htr II tandem HAMP weregenerated, which responded differently to the ser<strong>in</strong>e signal between sensorand output-doma<strong>in</strong>s i.e an <strong>in</strong>version of signal was observed. Themechanistic differences <strong>in</strong> these two chimeras, which lead to completelyopposite output, are be<strong>in</strong>g actively <strong>in</strong>vestigated.1. Hulko, M., F. Berndt, M. Gruber, J.U. L<strong>in</strong>der, V. Truffault, A. Schultz, J.Mart<strong>in</strong>, J.E. Schultz, A.N. Lupas,M. Coles. Cell,2006,126, 929-940.2. Wegener, A. A., Chizhov, I., Engelhard, M. & Ste<strong>in</strong>hoff, H. J. J. Mol. Biol,2000,301, 881-891.BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!