20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

92provide an <strong>in</strong>sight <strong>in</strong>to the regulation network <strong>in</strong> order to approach thecomplete picture of the cell.First labell<strong>in</strong>g studies showed that glucose is metabolized only via theEntner-Doudoroff pathway. This is an extremely unusual flux distributionand seems to be characteristic for the Roseobacter clade. In this study theimpact of nutritional changes on the flux distribution was <strong>in</strong>vestigated byperform<strong>in</strong>g the first systems wide metabolic flux analyses.Acknowledgements: The work is funded by the German Research Foundationwith<strong>in</strong> the subproject C4 <strong>in</strong> the SFB TRR51 “Ecology, Physiology andMolecular Biology of the Roseobacter clade: Towards a Systems BiologyUnderstand<strong>in</strong>g of a Globally Important Clade of Mar<strong>in</strong>e Bacteria”.[1] Buchan A, González JM, Moran MA (2005), Appl Environ Microbol, 71(10): 5665-5677[2] Wagner-Döbler I, Ballhausen B, et al. (2010) ISME J, 4: 61-77[3] Fürch T, Preusse M, et al. (2009), BMC Microbiology, 9: 209[4] Seyedsayamdost, M. R., G. Carr, et al. (2011), J Am Chem Soc.[5] Martens T, Heidorn T, et al. (2006), Int J Syst Evol Microbiol, 56(6): 1293[6] Quek, L. E., C. Wittmann, et al. (2009), Microb Cell Fact 8: 25.MEV011Characterization and manipulation of the biosyntheticpathway of cyanobacterial tricyclic microvirid<strong>in</strong>s <strong>in</strong> E. coliA.R. Weiz* 1 , K. Ishida 2 , K. Makower 1 , N. Ziemert 3 , C. Hertweck 2 , E. Dittmann 11 Institute of Biochemistry and Biology, Microbiology, Golm, Germany2 Leibniz Institute for Natural Product Research and Infection Biology, Jena,Germany3 Scripps Institution of Oceanography, San Diego, United StatesCyanobacteria are a structurally diverse group of bacteria, mak<strong>in</strong>g avariety of biochemically active natural products us<strong>in</strong>g mostly thenonribosomal mach<strong>in</strong>ery of large multienzyme complexes. Microvirid<strong>in</strong>sare the largest known cyanobacterial oligopeptides synthesized through aunique ribosomal route (1). The unprecedented microvirid<strong>in</strong> gene clusterencodes for a precursor peptide (MdnA), two novel ATP-grasp ligases(MdnB and C), a GNAT-type acetyltransferase (MdnD) and an ABCtransporter(MdnE).Microvirid<strong>in</strong>s comprise an unrivaled multicyclic cagelikearchitecture, carry<strong>in</strong>g characteristic -ester and a secondary -amidebond. They are produced by different isolates of cyanobacteria, <strong>in</strong>clud<strong>in</strong>gthe unicellular, bloom-form<strong>in</strong>g freshwater cyanobacteriumMicrocystisaerug<strong>in</strong>osaNies843. The ser<strong>in</strong>e protease <strong>in</strong>hibitory activity contributes toboth ecological and pharmacological relevance of microvirid<strong>in</strong>s. Here wereport the construction of a stable expression platform for heterologousexpression of microvirid<strong>in</strong>s <strong>in</strong>E. coli. Biostatistics and mutational analysisidentified the conserved PFFARFL motif <strong>in</strong> the precursor peptide as arecognition sequence for the ATP-grasp ligases. Manipulations of the C-term<strong>in</strong>al part of the leader peptide abolished lactam r<strong>in</strong>g formation ofmicrovirid<strong>in</strong>s.The ABC-transporter MdnE was unveiled to be crucial forcyclization and process<strong>in</strong>g of microvirid<strong>in</strong>s, probably hold<strong>in</strong>g andstabiliz<strong>in</strong>g a putative microvirid<strong>in</strong> maturation complex at the <strong>in</strong>nermembrane (2). Site-directed mutagenesis <strong>in</strong> the microvirid<strong>in</strong> core sequenceshowed flexibility of the microvirid<strong>in</strong> biosynthetic pathway to be used forpeptide eng<strong>in</strong>eer<strong>in</strong>g. We determ<strong>in</strong>ed residues that are important for theprotease <strong>in</strong>hibition and are currently <strong>in</strong> process to optimize the product fordifferent pharmaceutical targets. Furthermore, we developed a method toexpress cryptic microvirid<strong>in</strong> precursor peptides from field and lab samples.1. Ziemert, N., K. Ishida, A. Liaimer, C. Hertweck and E. Dittmann. Angew Chem Int EdEngl47(40), 2008, p. 7756-9.2. Weiz, Annika R., K. Ishida, K. Makower, N. Ziemert, C. Hertweck and E. Dittmann. Chemistry& Biology18(11), 2011, p. 1413-1421.MEV012Evaluation of Streptomyces coelicolor as a heterologous expressionhost for natural products from mar<strong>in</strong>e filamentous cyanobacteriaA. Jones* 1,2 , S. Ottilie 2 , A. Eustáquio 2 , D. Edwards 3 , L. Gerwick 2 ,B. Moore 2 , W. Gerwick 21 Universität Tüb<strong>in</strong>gen, Pharmazeutische Biologie, Tüb<strong>in</strong>gen, Germany2 University of California San Diego, Scripps Institution of Oceanography,La Jolla, CA, USA, United States3 California State University , Chico, CA, USA, United StatesFilamentous mar<strong>in</strong>e cyanobacteria are rich sources of bioactive naturalproducts and employ highly unusual biosynthetic enzymes <strong>in</strong> theirassembly. However, the current lack of techniques for stable DNA transfer<strong>in</strong>to these filamentous organisms comb<strong>in</strong>ed with the absence ofheterologous expression strategies for non-ribosomal cyanobacterial geneclusters prohibit the creation of mutant stra<strong>in</strong>s or the heterologousproduction of these cyanobacterial compounds <strong>in</strong> other bacteria. In thisstudy, we evaluated the capability of a derivative of the modelact<strong>in</strong>omycete Streptomyces coelicolor A3(2) to express enzymes <strong>in</strong>volved<strong>in</strong> the biosynthesis of the prote<strong>in</strong> k<strong>in</strong>ase C activator lyngbyatox<strong>in</strong> A from aHawaiian stra<strong>in</strong> of Moorea producta (previously classified as Lyngbyamajuscula). Despite large differences <strong>in</strong> GC content between these twobacteria and the presence of multiple TTA/UUA leuc<strong>in</strong>e codons <strong>in</strong>lyngbyatox<strong>in</strong> open read<strong>in</strong>g frames, we were able to achieve expression ofLtxB and LtxC <strong>in</strong> S. coelicolor M512 and confirmed the <strong>in</strong> vitrofunctionality of S. coelicolor overexpressed LtxC. Attempts to express theentire lyngbyatox<strong>in</strong> A gene cluster <strong>in</strong> S. coelicolor M512 were notsuccessful because of transcript term<strong>in</strong>ation observed for the ltxA gene,which encodes a large non-ribosomal peptide synthetase. However, theseattempts did show a detectable level of cyanobacterial promoterrecognition <strong>in</strong> Streptomyces. Successful Streptomyces expression ofbiosynthetic enzymes from mar<strong>in</strong>e cyanobacteria provides a new platformfor biochemical <strong>in</strong>vestigation of these prote<strong>in</strong>s and a promis<strong>in</strong>g avenue forcomb<strong>in</strong>atorial biosynthesis between these two bacterial phyla.MEP001Endophytic fungi, the microbial factories of associated plantsecondary metabolites: Camptothec<strong>in</strong> as an exampleS. Kusari*, M. SpitellerTU Dortmund, Institute of Environmental Research (INFU) of the Facultyof Chemistry, Dortmund, GermanyEndophytic fungi <strong>in</strong>habit healthy tissues of plants and occasionallyproduce associated plant secondary metabolites [1-5]. We recently isolatedan endophytic fungus, Fusarium solani from the bark of Camptothecaacum<strong>in</strong>ata, which is capable of produc<strong>in</strong>g the anticancer pro-drugcamptothec<strong>in</strong> (CPT) and two structural analogues <strong>in</strong> axenic monoculture[6]. We deciphered a cross-species biosynthetic pathway where theendophyte utilizes <strong>in</strong>digenous geraniol 10-hydroxylase, secologan<strong>in</strong>synthase, and tryptophan decarboxylase to biosynthesize CPT precursors.However, to complete CPT biosynthesis, it requires the host strictosid<strong>in</strong>esynthase [7]. The fungal CPT biosynthetic genes destabilized ex plantaover successive subculture generations. The seventh subculture predictedprote<strong>in</strong>s exhibited reduced homologies to the orig<strong>in</strong>al enzymes prov<strong>in</strong>gthat such genomic <strong>in</strong>stability leads to dysfunction at the am<strong>in</strong>o acid level.The endophyte with an impaired CPT biosynthetic capability wasartificially <strong>in</strong>oculated <strong>in</strong>to the liv<strong>in</strong>g host plants and then recovered aftercolonization. CPT biosynthesis could still not be restored [7]. We furtherdiscovered the survival strategy of this endophyte by identify<strong>in</strong>g typicalam<strong>in</strong>o acid residues <strong>in</strong> the CPT-b<strong>in</strong>d<strong>in</strong>g and catalytic doma<strong>in</strong>s of itstopoisomerase I [8]. Recently, it was also revealed that chrysomelidbeetles (Kanarella unicolor) feeds on the leaves of CPT-conta<strong>in</strong><strong>in</strong>g N.nimmoniana without any apparent adverse effect [9]. We thus envisageaddress<strong>in</strong>g the follow<strong>in</strong>g open questions: why and how do endophytesproduce plant bioactive compounds? What are the diverse <strong>in</strong>teractions thatendophytes have with other coexist<strong>in</strong>g endophytes, host plants, <strong>in</strong>sects,and specific herbivores? Elucidat<strong>in</strong>g these connections can not onlyenhance the understand<strong>in</strong>g of evolution of complex defense mechanisms <strong>in</strong>plants and associated organisms, but also help <strong>in</strong> the susta<strong>in</strong>ed productionof plant compounds us<strong>in</strong>g endophytes harbored with<strong>in</strong> them.[1] Kusari, S. & Spiteller, M. (2011). Nat. Prod. Rep. 28, 1203-1207.[2] Kusari, S. & Spiteller, M. (2010). In Biotechnology - Its Grow<strong>in</strong>g Dimensions. Sonali Publications, NewDelhi, India, pp. 1-27.[3] Kusari, S., Lamshöft, M., Spiteller, M. (2009). J. Appl. Microbiol. 107, 1019-1030.[4] Kusari, S., Zühlke, S., Kosuth, J., Cellarova, E. & Spiteller, M. (2009). J. Nat. Prod. 72, 1825-1835.[5] Kusari, S., Lamshöft, M., Zühlke, S. & Spiteller, M. (2008). J. Nat. Prod. 71, 159-162.[6] Kusari, S., Zühlke, S. & Spiteller, M. (2009). J. Nat. Prod. 72, 2-7.[7] Kusari, S., Zühlke, S. & Spiteller, M. (2011). J. Nat. Prod. 74, 764-775.[8] Kusari, S., Kosuth, J., Cellarova, E. & Spiteller, M. (2011). Fungal Ecol. 4, 219-223.[9] Ramesha, B. T., Zuehlke, S., Vijaya, R., Priti, V., Ravikanth, G., Ganeshaiah, K., Spiteller, M., Shaanker,R. U. (2011). J. Chem. Ecol. 37, 533-536.MEP002Biochemical characterization of ecto<strong>in</strong>e hydroxylases fromextremophilesN. Widderich*, M. Pittelkow, S. Weigand, E. BremerPhilipps-University Marburg, Biology, Marburg, GermanyEcto<strong>in</strong>e and 5-hydroxyecto<strong>in</strong>e are widely used by members of the Bacteriato offset the detrimental effects of high osmolarity on cellular physiology.Both compatible solutes also possess stabiliz<strong>in</strong>g effects formacromolecules and these properties, sometimes also referred to <strong>in</strong> theliterature as "chemical chaperones", have spurred considerablebiotechnological <strong>in</strong>terest <strong>in</strong> ecto<strong>in</strong>es. They have already found practicaluses <strong>in</strong> cosmetics, sk<strong>in</strong>-care products, as prote<strong>in</strong>- and whole cell stabilizersand medical applications are currently envisioned as well. Ecto<strong>in</strong>esynthesis is osmotically stimulated and catalyzed by the EctABC enzymes.A subset of the ecto<strong>in</strong>e producers typically convert part of the newlyproduced ecto<strong>in</strong>e <strong>in</strong>to 5-hydoxyecto<strong>in</strong>e through the enzymatic action of theEctD hydroxylase, a member of the non-heme iron (II) and 2-oxoglutaratedependentdeoxygenase super-family (1, 2). Although closely related <strong>in</strong>chemical structure, ecto<strong>in</strong>e and 5-hydroxyecto<strong>in</strong>e possess differentproperties, with 5-hydroxyecto<strong>in</strong>e be<strong>in</strong>g often the more effectivestabiliz<strong>in</strong>g compound and the more potent cellular stress protectant (3).Ecto<strong>in</strong>e hydroxylases from Virgibacillus salexigens (1) and Streptomycescoelicolor (3) have been biochemically characterized and a high-resolutioncrystal structure of the EctD prote<strong>in</strong> from V. salexigens has been solved(2). This crystal structure revealed the position<strong>in</strong>g of the iron ligand with<strong>in</strong>the active site of the EctD enzyme but it conta<strong>in</strong>ed neither the substrateecto<strong>in</strong>e nor the co-substrate 2-oxoglutarate. To advance our biochemicalunderstand<strong>in</strong>g of this enzyme and to characterize EctD-type prote<strong>in</strong>s forfurther crystallographic studies, we have characterized the properties ofecto<strong>in</strong>e hydroxylases from microorganisms that can colonize habitats withBIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!