20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

235cell l<strong>in</strong>e-un-specific adherent and cell l<strong>in</strong>e-specific adherent. We def<strong>in</strong>edVAGs (e.g.sfa/foc,malX) which presence was associated with higheradhesion to one specific cell l<strong>in</strong>e and thus host and/or tissue specificity.However, there were no differences <strong>in</strong> adhesion rates between pathogenicand commensal isolates.In conclusion, we show a broad variety of VAG and adhesion pattern <strong>in</strong>human and animal E. coli isolates. Adhesion is host- and cell type-specificenabl<strong>in</strong>g colonization of different microhabitats. There are confirmedadhes<strong>in</strong>s but other hypothetical and yet unknown adhes<strong>in</strong>s and their hostand tissue specificity have to be identified and characterized <strong>in</strong> futurestudies.SSP029A role for glutam<strong>in</strong>e synthetase <strong>in</strong> regulation of prol<strong>in</strong>ebiosynthesisS. Köcher, M. Thompson*, V. MüllerMolecular Microbiology & Bioenergetics, Institute for MolecularBiosciences, Goethe University, Frankfurt/Ma<strong>in</strong>, Germany, GermanyGlutam<strong>in</strong>e and glutamate are the major compatible solutes <strong>in</strong> the moderatehalophile Halobacillus halophilus under moderate sal<strong>in</strong>ities and prol<strong>in</strong>e athigh sal<strong>in</strong>ities (1). One of the isogenes/-enzymes of glutam<strong>in</strong>e synthetase(glnA2) was shown before to be the osmoregulated key player <strong>in</strong> sal<strong>in</strong>itydependentglutam<strong>in</strong>e and glutamate biosynthesis (2). Here, we havedeleted glnA2 from the chromosome of H. halophilus. Growth of themutant was not impaired, neither at low nor at high salt, and the mutant didnot have reduced levels of glutam<strong>in</strong>e or glutamate, <strong>in</strong>dicat<strong>in</strong>g a metabolicbypass for glutam<strong>in</strong>e and gutamate production. Much to our surprise, themutant did no longer produce prol<strong>in</strong>e as compatible solute. The loss ofprol<strong>in</strong>e was compensated for by <strong>in</strong>creased ecto<strong>in</strong>e production. Consistentwith this is the observation that the transcript levels for ectA (and glnA1)were <strong>in</strong>creased <strong>in</strong> the mutant.Our data demonstrate a regulatory role of glutam<strong>in</strong>e synthetase 2 <strong>in</strong> prol<strong>in</strong>ebiosynthesis. Possible regulatory scenarios are discussed.(1) Saum, S.H. & Müller, V., (2008) Regulation of osmoadaption <strong>in</strong> the moderate halophileHalobacillus halophilus: chloride, glutamate and switch<strong>in</strong>g osmolyte stategies. Sal<strong>in</strong>e Systems 4: 4(2) Saum, S.H., Sydow, S.F., Palm, P., Pfeiffer, F., Oesterhelt, D., and Müller, V., (2006)Biochemical and molecular characterization of the biosynthesis of glutam<strong>in</strong>e and glutamate, twomajor compatible solutes <strong>in</strong> the moderately halophilic bacterium Halobacillus halophilus. J.Bacteriol. 188: 6808-6815SSP030The impact of a typical biofilm flora on the VBNC-state ofpathogens <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water biofilmsM. Kliefoth*, U. SzewzykTechnische Universität Berl<strong>in</strong>, FG Umweltmikrobiologie, Berl<strong>in</strong>, GermanyPathogens like Legionella pneumophilaand Pseudomonas aerug<strong>in</strong>osa areknown for their ability to persist <strong>in</strong> house <strong>in</strong>stallations and pose a risk of<strong>in</strong>fections for humans. The standard approach for detection is still theheterotrophic plate count. But it is also common, that over 90 % of themicroorganisms <strong>in</strong> such oligothrophic environment are not grow<strong>in</strong>g onknown media.Only a few studies focus on the typical biofilm flora <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water,which is shown to be a mixture of ma<strong>in</strong>ly - , - and -subclasses ofProteobacteria. These bacteria can turn <strong>in</strong>to a physiological state called“viable-but-not-culturable” (VBNC), <strong>in</strong> which no growth can be observedon plates. The bacteria show dwarfish cell forms and reduced metabolicactivity.In our <strong>in</strong>vestigations we study how these bacteria have an impact on theentrance or exit of P. aerug<strong>in</strong>osa <strong>in</strong> the VBNC-state. Therefore a biofilmreactor was developed to simulate a low nutrient environment and to<strong>in</strong>duce VBNC <strong>in</strong> P. aerug<strong>in</strong>osa as well as other selected bacteria, whichwere isolated <strong>in</strong> our group from native biofilms.Mono-species biofilms and multi-species biofilms with <strong>in</strong>tegratedpathogens are compared by us<strong>in</strong>g culture- (e.g. CFU) and culture<strong>in</strong>dependentmethods like Live/Dead sta<strong>in</strong><strong>in</strong>g, PAC (a direct- viable-countmethod), qPCR, FISH and CLSM. The aim of this project is to ga<strong>in</strong><strong>in</strong>sights <strong>in</strong> which manner P. aerug<strong>in</strong>osa can persist <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g waterbiofilms and how native bacteria <strong>in</strong>fluences the resistance of P. aerug<strong>in</strong>osa<strong>in</strong> water plumb<strong>in</strong>g. Furthermore the reproducible <strong>in</strong>duction of VBNC bylow nutrients (carbon, phosphate or trace elements) are be<strong>in</strong>g consideredand <strong>in</strong>vestigated.SSP031The CRISPR-Cas system of Haloferax volcaniiB. Stoll*, J. Brendel, A. MarchfelderUniversity of Ulm, Bio II, Ulm, GermanyThe recently discovered CRISPR-Cas system (CRISPR:clustered regularly<strong>in</strong>terspaced short pal<strong>in</strong>dromic repeats, Cas: CRISPR-associated) is anadaptive and heritable resistance mechanism aga<strong>in</strong>st foreign geneticelements. The CRISPR-Cas system consists of clusters of repetitivechromosomal DNA <strong>in</strong> which short pal<strong>in</strong>dromic DNA repeats are separatedby short spacers, the latter be<strong>in</strong>g sequences derived from the <strong>in</strong>vader. Inaddition, a set of prote<strong>in</strong>s, the Cas prote<strong>in</strong>s, is <strong>in</strong>volved. We are<strong>in</strong>vestigat<strong>in</strong>g the CRISPR-Cas system <strong>in</strong> the halophilic archaeon Haloferaxvolcanii. H. volcanii is an archaeal model organism which requires about2.1 M NaCl for optimal growth and raises the <strong>in</strong>tracellular saltconcentration to similar values to cope with high salt concentration <strong>in</strong> themedium. The genome is sequenced and Haloferax is one of the fewarchaeal organisms where genetic systems are available.H. volcanii has three CRISPR loci, one located on the chromosome andtwo located on one of the chromosomal plasmids. Next to one of theCRISPR loci the Cas prote<strong>in</strong>s are encoded <strong>in</strong> one long multicistronicoperon <strong>in</strong>clud<strong>in</strong>g genes for Cas1-8.We are analys<strong>in</strong>g the expression and process<strong>in</strong>g of the CRISPR RNA. Tothat end we generated a deletion stra<strong>in</strong> for the cas6 gene and <strong>in</strong>vestigatedits effect on CRISPR RNA process<strong>in</strong>g.SSP032Copper impacts the gold toxicity <strong>in</strong> Cupriavidus metalliduransN. Wiesemann* 1 , G. Hause 2 , J. Mohr 3 , F. Reith 4 , C. Große 1 , D.H. Nies 11 Mart<strong>in</strong>-Luther-University, Moleculare Microbiology, Halle (Saale), Germany2 Biocenter of the Mart<strong>in</strong>-Luther-University Halle-Wittenberg, Microscopy Unit,Halle (Saale), Germany3 Hannover Medical School, Hannover, Germany4 University of Adelaide, School of Earth and Environmental Sciences ,Adelaide, AustraliaCupriavidus metallidurans could be responsible for the formation ofbacteriogenic secondary gold nanoparticles 1,2 . We <strong>in</strong>vestigated if geneclusters that are up-regulated after treatment with gold complexes might be<strong>in</strong>volved <strong>in</strong> this process. The megaplasmids of stra<strong>in</strong> CH34, pMOL28 witha chromate and pMOL30 with an extensive copper resistance determ<strong>in</strong>ant,are not required for the formation of colloidal particles visible <strong>in</strong> TEM,which might be gold nanoparticles. A hypothesis that considered a goldtransformation process by the gig (gold <strong>in</strong>duces genes) cluster productsrem<strong>in</strong>iscent to mercury transformation by mer gene products could not beverified. Cells pre-<strong>in</strong>cubated with non toxic concentrations of copperdisplayed <strong>in</strong>creased copper resistance as expected, however, <strong>in</strong> some C.metallidurans stra<strong>in</strong>s, gold resistance decreased <strong>in</strong> parallel to <strong>in</strong>creas<strong>in</strong>gcopper resistance <strong>in</strong> the copper-treated cells. This demonstrated thathandl<strong>in</strong>g of gold ions by some - but not all - prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> copperresistance led to enhanced toxicity of gold. Deletion of other genes<strong>in</strong>volved <strong>in</strong> copper resistance led to a simultaneous decrease of copper andgold resistance but not <strong>in</strong> all stra<strong>in</strong>s. All these data demonstrated thatcopper resistance systems <strong>in</strong> C. metallidurans are <strong>in</strong>volved <strong>in</strong>transformation of gold, however, not always to the advantage of the cells.The <strong>in</strong>trigu<strong>in</strong>g network of the copper and gold-handl<strong>in</strong>g factors <strong>in</strong> C.metallidurans is thus very complicated and needs a detailed <strong>in</strong>-depthanalysis.1 Reith, F., B. Etschmann, C. Grosse, H. Moors, M. A. Benotmane, P. Monsieurs, G. Grass, C. Doonan, S.Vogt, B. Lai, G. Mart<strong>in</strong>ez-Criado, G. N. George, D. H. Nies, M. Mergeay, A. Pr<strong>in</strong>g, G. Southam, and J.Brugger. 2009. Mechanisms of gold biom<strong>in</strong>eralization <strong>in</strong> the bacterium Cupriavidus metallidurans. ProcNatl Acad Sci U S A 106:17757-17762.2 Reith, F., S. L. Rogers, D. C. McPhail, and D. Webb. 2006. Biom<strong>in</strong>eralization of gold: biofilms onbacterioform gold. Science 313:233-236.SSP033A comb<strong>in</strong>ed transcriptomic and proteomic <strong>in</strong>vestigation <strong>in</strong>to theosmoregulatory mechanisms of Halomonas elongata DSM 2581 TS. Faßbender 1 , B. Scheffer 2 , D. Oesterhelt 2 , F. Siedler 2 , H.J. Kunte* 11 Federal Institute for Materials Research and Test<strong>in</strong>g (BAM), Materialsand Environment Division, Berl<strong>in</strong>, Germany2 Max Planck Institute of Biochemistry, Department of MembraneBiochemistry, Mart<strong>in</strong>sried, GermanyThe halophilic -proteobacterium Halomonas elongata thrives at a widerange of salt concentrations by accumulat<strong>in</strong>g the compatible solute ecto<strong>in</strong>e.Ecto<strong>in</strong>e can be amassed <strong>in</strong> the cytoplasm either by synthesis or bytransport from the medium. To enable ecto<strong>in</strong>e uptake, H. elongata isequipped with a specific transport system, named TeaABC. TeaABC is notonly required for the accumulation of ecto<strong>in</strong>e, but also functions as asalvage system for ecto<strong>in</strong>e leak<strong>in</strong>g out of the cell. This observation led tothe hypothesis that TeaABC and potential efflux prote<strong>in</strong>(s) might be<strong>in</strong>volved <strong>in</strong> regulat<strong>in</strong>g the cytoplasmic ecto<strong>in</strong>e concentration. In order toidentify membrane prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> the efflux of compatible solutesand to ga<strong>in</strong> more <strong>in</strong>formation about the changes <strong>in</strong> the prote<strong>in</strong> compositionof halophiles <strong>in</strong> response to salt stress, we analyzed i) the transcriptomeand ii) the membrane-proteome of H. elongata. By apply<strong>in</strong>g a 15 N isotopemetabolic label<strong>in</strong>g strategy, a total of 135 membrane prote<strong>in</strong>s wereidentified and quantified which are significantly up or down regulated <strong>in</strong>response to changes of the external sal<strong>in</strong>ity. In cells adapted to low saltmedium (100 mM NaCl) the level of 90 prote<strong>in</strong>s has changed significantlycompared to cells adapted to the optimal salt concentration of 1 M NaCl.The content of only 45 prote<strong>in</strong>s was changed when cells were adapted tohigh salt medium of 2 M NaCl compared to cells grown at 1 M NaCl. Themajority of the 135 regulated prote<strong>in</strong>s are putative transport prote<strong>in</strong>s. FourBIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!