20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

101MEP038A new arylsulfate sulfotransferase <strong>in</strong>volved <strong>in</strong> liponucleosideantibiotic biosynthesis <strong>in</strong> streptomycetesK. Eitel* 1 , L. Kaysser 2 , T. Tan<strong>in</strong>o 3 , S. Siebenberg 1 , A. Matsuda 3 ,S. Ichikawa 3 , B. Gust 11 University of Tüb<strong>in</strong>gen, Pharmaceutical Institute, Tüb<strong>in</strong>gen, Germany2 Scripps Institution of Oceanography, La Jolla, United States3 Faculty of Pharmaceutical Science, Hokkaido, JapanSulfotransferases are <strong>in</strong>volved <strong>in</strong> a variety of physiological processes andtypically use 3-phosphoadenos<strong>in</strong>e 5-phosphosulfate (PAPS) as the sulfatedonor substrate. In contrast, microbial arylsulfate sulfotransferases(ASSTs) are PAPS-<strong>in</strong>dependent and utilize arylsulfates as sulfate donors.Yet, their genu<strong>in</strong>e acceptor substrates are unknown. Here, we demonstratethat Cpz4 fromStreptomyces sp. MK730-62F2 is an ASST-typesulfotransferase responsible for the formation of sulfated liponucleosideantibiotics[1]. Gene deletion mutants showed that cpz4 is required for theproduction of sulfated caprazamyc<strong>in</strong> derivatives.Clon<strong>in</strong>g, overproduction, and purification of Cpz4 resulted <strong>in</strong> a 58-kDasoluble prote<strong>in</strong>. The enzyme catalyzed the transfer of a sulfate group fromp-nitrophenol sulfate (Km 48.1 m, kcat 0.14 s1) and methylumbelliferone sulfate (Km 34.5 m, kcat 0.15 s1) onto phenol (Km 25.9and 29.7 mm, respectively). The Cpz4 reaction proceeds by a p<strong>in</strong>g pongbi-bi mechanism. Several structural analogs of <strong>in</strong>termediates of thecaprazamyc<strong>in</strong> biosynthetic pathway were synthesized and tested assubstrates of Cpz4. Des-N-methyl-acyl-caprazol was converted withhighest efficiency 100 times faster than phenol. The fatty acyl side cha<strong>in</strong>and the uridyl moiety seem to be important for substrate recognition byCpz4. Liponucleosides, partially purified from various mutant stra<strong>in</strong>s werereadily sulfated by Cpz4 us<strong>in</strong>g p-nitrophenol sulfate. No product formationcould be observed with PAPS as the donor substrate. Sequence homologyof Cpz4 to the previously exam<strong>in</strong>ed ASSTs is low. However, numerousorthologs are encoded <strong>in</strong> microbial genomes and represent <strong>in</strong>terest<strong>in</strong>gsubjects for future <strong>in</strong>vestigations.[1] L. Kaysser, K. Eitel, T. Tan<strong>in</strong>o, S. Siebenberg, A. Matsuda, S. Ichikawa and B. Gust, J BiolChem.285(2010):12684-94.MEP039Tools for the analysis of metagenomic libraries regard<strong>in</strong>g theproduction of secondary metabolites with biosurfactantpropertiesS. Thies* 1 , F. Rosenau 2 , S. Wilhelm 1 , K.-E. Jaeger 11 He<strong>in</strong>rich-He<strong>in</strong>e-Universität , Institute for Molecular Enzyme Technology,Düsseldorf, Germany2 Universität Ulm, Institut für Pharmazeutische Biotechnologie, Ulm, GermanyMicrobiological produced compounds with tensidic properties(“biosurfactants”) may be useful alternatives for chemical synthesizedcompounds.Secondary metabolites like biosurfactants are synthesized <strong>in</strong> metabolicpathways with <strong>in</strong>dividual reactions catalysed by different enzymes. Inbacteria, the genes which encode enzymes <strong>in</strong>volved <strong>in</strong> the same pathwayare often organized <strong>in</strong> gene clusters, mean<strong>in</strong>g they are all localized <strong>in</strong> oneparticular region of the chromosome.In the case of biosurfactants, known gene cluster sizes are between ca.3.000 base pairs (bp) and up to 70.000 bp.Aim of this project is the construction of metagenomic libraries with DNAfragments conta<strong>in</strong><strong>in</strong>g clusters encod<strong>in</strong>g enzymes of surfactant produc<strong>in</strong>gpathways. Construct<strong>in</strong>g metagenomic libraries requires transfer of genetic<strong>in</strong>formation of certa<strong>in</strong> habitats <strong>in</strong>clud<strong>in</strong>g non-cultivatable organisms whichcan exclusively live <strong>in</strong> those niches <strong>in</strong>to a usable form by isolat<strong>in</strong>g theDNA directly from the environment and clon<strong>in</strong>g it <strong>in</strong>to appropriatevectors. By expression of the metagenomic DNA <strong>in</strong> suitable hosts,products of biosynthetic pathways like biosurfactants encoded by thisDNA can be identified. S<strong>in</strong>ce already the identification is done <strong>in</strong> wellestablishedand safe expression stra<strong>in</strong>s this method not only makes novelcompounds available but also ensures an option for recomb<strong>in</strong>antproduction <strong>in</strong> these platform production stra<strong>in</strong>s. Promis<strong>in</strong>g habitats to f<strong>in</strong>dstra<strong>in</strong>s produc<strong>in</strong>g tensidic molecules are fatty and oily environments likeslaughterhouses or tannery. Libraries conta<strong>in</strong><strong>in</strong>g DNA orig<strong>in</strong>ated <strong>in</strong> suchhabitats will be screened for produc<strong>in</strong>g compounds with tensidic properties.At present construction of a novel expression vector for libraryconstruction is f<strong>in</strong>ished which allows the expression of gene clustersencoded <strong>in</strong> both directions of an <strong>in</strong>serted DNA fragment. Enabl<strong>in</strong>g a rapidworkflow as required for efficient work with the large libraries, we haveoptimized a recently developed fast screen<strong>in</strong>g method for biosurfactantproduction concern<strong>in</strong>g our purposes.MEP040Anti-micobial activity of soil-liv<strong>in</strong>g Bacillus species aga<strong>in</strong>sthuman pathogenic and sepsis-related bacteriaO. Makarewicz, M. Kl<strong>in</strong>ger*, M. PletzUniversitätskl<strong>in</strong>ikum Jena, Sektion Kl<strong>in</strong>ische Infektiologie, Jena, GermanyObjectives: Soil liv<strong>in</strong>g bacteria are known to produce compounds thatpromote plant growth and confer resistance to plant diseases caused bydifferent pathogens [1, 2]. The rhizosphere can be colonized bybiofilmformation by various species, thus anti-microbials ensure alsosurvival advantage aga<strong>in</strong>st compet<strong>in</strong>g commensals. For example, B.amyloliquefaciensstra<strong>in</strong> FZB42 secrets at least 12 known antibiotics,which <strong>in</strong>hibit growth and destroy biofilms of other microorganisms andthat belong to different chemical classes: lipopetides, polyketides, smallpeptides [3]. The aim of our efforts is to scrren culture supernatants of soliliv<strong>in</strong>g Gram+ for novel substances with activity aga<strong>in</strong>st biofilms of multidrugresistant major bacterial human pathogens <strong>in</strong>volved <strong>in</strong>to catheter- anddevice associated <strong>in</strong>fections.Methods: We used supernatants of B. amyloliquefaciens(n=5), B. pumilus(n=1), B. licheniformis(n=1) and P. polymyxa (n=3) that were filtered,lyophilized and resuspended <strong>in</strong> 1/10 volume <strong>in</strong> sterilized water.Supernatants were used <strong>in</strong> disc diffusion tests aga<strong>in</strong>st multi-drug resistantisolates of E. coli (n=3), K. pneumoniae (n=2), P. aurug<strong>in</strong>osa(n=4), S.aureus (n=3), E. faecalis (n=2) and P. mirabilis (n=1) as <strong>in</strong>dicator stra<strong>in</strong>s.A more detailed analysis of active compounds was performed us<strong>in</strong>gbioautography based on th<strong>in</strong> layer chromatography.Results: Supernatants of P. polymyxa stra<strong>in</strong>sexhibited strongest antimicrobialactivity aga<strong>in</strong>st Gram+ and Gram- pathogens. B. amyloliquefaciensFZB 42 showed also high activities aga<strong>in</strong>st all <strong>in</strong>dicator stra<strong>in</strong>s. B. pumilus andB. licheniformis <strong>in</strong>hibited ma<strong>in</strong>ly growth of Gram+.Conclusion: Gram-positives soil liv<strong>in</strong>g bacteria secrete a wide spectrum of bioactivesecondary metabolites, which can <strong>in</strong>hibit the growth of humanpathogens. Further experiments will concentrate on identification of particularsubstances antimicrobial activity and analyze their anti-biofilm activities.1. Verhagen, B.W., et al.,Pseudomonas spp.-<strong>in</strong>duced systemic resistance to Botrytis c<strong>in</strong>erea is associatedwith <strong>in</strong>duction and prim<strong>in</strong>g of defence responses <strong>in</strong> grapev<strong>in</strong>e.J Exp Bot, 2010.61(1): p. 249-60.2. Ko, H.S., et al.,Biocontrol Ability of Lysobacter antibioticus HS124 Aga<strong>in</strong>st Phytophthora Blight IsMediated by the Production of 4-Hydroxyphenylacetic Acid and Several Lytic Enzymes.Curr Microbiol,2009.3. Chen, X.H., et al.,Comparative analysis of the complete genome sequence of the plant growth-promot<strong>in</strong>gbacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol, 2007.25(9): p. 1007-14.MEP041Identification of a gene participat<strong>in</strong>g <strong>in</strong> the sulphurmetabolism <strong>in</strong> Oenococcus oeniC. Knoll 1 , M. du Toit 2 , S. Schnell 3 , D. Rauhut* 4 , S. Irmler 51 Hochschule Rhe<strong>in</strong>Ma<strong>in</strong>, Fachbereich Geisenheim, Geisenheim, Germany2 University Stellenbosch, Institute for W<strong>in</strong>e Biotechnology, Stellenbosch, SouthAfrica3 Justus-Liebig-Universität Gießen, Institute for Applied Microbiology, Gießen,Germany4 Forschungsanstalt Geisenheim, Microbiology and Biochemistry, Geisenheim,Germany5 Forschungsanstalt Agroscope Liebefeld-Posieux ALP, Bern, SwitzerlandSulphur-conta<strong>in</strong><strong>in</strong>g compounds <strong>in</strong> w<strong>in</strong>e have a high impact on w<strong>in</strong>eflavour and quality. Recent studies demonstrated that Oenococcus oeni isable to produce, from methion<strong>in</strong>e, different volatile sulphur compounds(VSC) (Pripis-Nicolau et al. 2004), but no specific enzymes have beenidentified and characterised so far.In this research work an enzyme that degrades sulphur-conta<strong>in</strong><strong>in</strong>g am<strong>in</strong>oacids was identified, heterologous expressed <strong>in</strong> Escherichia coliBL21(DE3) and biochemically characterised from two O. oeni stra<strong>in</strong>s ofoenological orig<strong>in</strong>s. The amplified PCR product consisted of 1140nucleotides encod<strong>in</strong>g a deduced prote<strong>in</strong> of 379 am<strong>in</strong>o acids and was highlyconserved among the compared O. oeni stra<strong>in</strong>s.The enzyme has characteristics of a cystathion<strong>in</strong>e-g-lyase (EC4.4.1.1), apyridoxal-5-phosphate-dependent enzyme catalyz<strong>in</strong>g an a,g-elim<strong>in</strong>ationreaction of l-cystathion<strong>in</strong>e to produce l-cyste<strong>in</strong>e, a-ketobutyrate andammonia. Moreover, it was able to catalyse an a,-elim<strong>in</strong>ation reactionsynthesiz<strong>in</strong>g homocyste<strong>in</strong>e, pyruvate and ammonia from l-cystathion<strong>in</strong>e.An elim<strong>in</strong>ation reaction of l-cyste<strong>in</strong>e and dl-homocyste<strong>in</strong>e was alsoefficiently catalysed by the enzyme, result<strong>in</strong>g <strong>in</strong> the formation of H 2S.Furthermore, the ability to demethiolate methion<strong>in</strong>e <strong>in</strong>to methanethiol, anunfavourable volatile sulphur substance, was shown.Climate change and specific v<strong>in</strong>ification practices can result <strong>in</strong> w<strong>in</strong>es withhigh alcohol concentrations (>13 % (v/v)). It could be demonstrated thatethanol contents up to 15 % (v/v) had no impact on the activity of thepurified enzymes. Furthermore, the enzymes were stable at temperaturessuitable for the w<strong>in</strong>e production and storage. If l-cystathion<strong>in</strong>e was used assubstrate, the enzyme activity was highest at pH 8.0. No activity wasobserved at a pH below 6.5. In, contrast, l-methion<strong>in</strong>e was degraded at pH5.5 and 6.Therefore further work with natural substrates will be necessary todeterm<strong>in</strong>e its <strong>in</strong>fluence on the VSC production <strong>in</strong> w<strong>in</strong>e (Knoll et al. 2011).BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!