20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

77phytochrome FphA for red light sens<strong>in</strong>g and the White Collar homologueLreA for blue light detection. A central regulator is the Velvet prote<strong>in</strong>, anFphA <strong>in</strong>teraction partner [2].Here, we report about a novel Velvet <strong>in</strong>teraction partner, VipA (velvet<strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong> A). VipA is a 334aa prote<strong>in</strong> <strong>in</strong>clud<strong>in</strong>g a FAR1 doma<strong>in</strong>.FAR1 prote<strong>in</strong>s are well known from plants like Arabidopsis thalianawhere members of this prote<strong>in</strong> family are <strong>in</strong>volved <strong>in</strong> phytochromecontrolled far-red light responses [3,4]. In A. nidulans a vipA deletionstra<strong>in</strong> produced only 36% of conidiospores compared to wildtype. Thisf<strong>in</strong>d<strong>in</strong>g po<strong>in</strong>ts to an activat<strong>in</strong>g role of VipA <strong>in</strong> asexual development. Incontrast VeA shows an <strong>in</strong>hibitory effect [5]. VeA - VipA <strong>in</strong>teraction wasshown by yeast-two hybrid analysis and bimolecular fluorescencecomplementation. The two prote<strong>in</strong>s <strong>in</strong>teract <strong>in</strong> the nuclei. VipA representsa new element <strong>in</strong> the regulatory network of spore formation <strong>in</strong> A. nidulans.Detailed analyses on gene regulation through VipA and its relation to otherlight regulators are on the way.1. Rodriguez-Romero J. et al. (2010) Annu Rev Microbiol 64: 585-610.2. Bayram O. et al. (2010) Fungal Genet Biol 47: 900-908.3. Hudson M. et al. (1999) Genes Dev 13: 2017-2027.4. L<strong>in</strong> R., Wang H. (2004) Plant Physiol 136: 4010-4022.5. Calvo A.M. (2008) Fungal Genet Biol 45: 1053-1061.FUV003Alternative splic<strong>in</strong>g <strong>in</strong> the fungal k<strong>in</strong>gdomK. Grützmann* 1 , K. Szafranski 2 , M. Pohl 1 , K. Voigt 3 , A. Petzold 2 , S. Schuster 11 University Jena, Department of Bio<strong>in</strong>formatics, Jena, Germany2 Leibniz Institute for Age Research, Fritz Lipmann Institute, GenomeAnalysis, Jena, Germany3 Leibniz Institute for Natural Product Research and Infection Biology andUniversity of Jena, Jena Microbial Resource Collection, Jena, GermanyDur<strong>in</strong>g gene expression of higher eukaryotes, alternative splic<strong>in</strong>g (AS) canproduce various isoforms from one primary transcript. Thus, AS is thoughtto <strong>in</strong>crease a cell's cod<strong>in</strong>g potential from a limited gene <strong>in</strong>ventory.Although AS is common <strong>in</strong> higher plants and animals, its extent and use <strong>in</strong>fungi is mostly unknown. We undertook a genome-wide <strong>in</strong>vestigation ofalternative splic<strong>in</strong>g <strong>in</strong> 28 fungal species from the three phyla Ascomycota,Basidiomycota and Mucoromycot<strong>in</strong>a, apply<strong>in</strong>g current bio<strong>in</strong>formatics datam<strong>in</strong><strong>in</strong>g techniques. Our analysis reveals that on average over the<strong>in</strong>vestigated fungi, 6.2% of the genes are associated with AS.Cryptococcus neoformans and Coccidioidis immitis show outstand<strong>in</strong>grates of 18% and 13%, respectively. Intron retention is the predom<strong>in</strong>ant AStype <strong>in</strong> fungi, whereas exon skipp<strong>in</strong>g is very rare. The <strong>in</strong>vestigatedBasidiomycota have on average higher AS rates (8.6%) and more diversecategories of AS affected genes than the Ascomycota (AS rate 7.0%,exclud<strong>in</strong>g yeasts). Contrarily, AS is nearly absent <strong>in</strong> strict yeasts. Wehypothesize that AS is rather common <strong>in</strong> many fungi and could facilitatemycelial and thallic complexity.FUV004Transcription factors controll<strong>in</strong>g sporulation <strong>in</strong> Magnaporthe oryzaeA. Yemel<strong>in</strong>*, S. Matheis, E. Th<strong>in</strong>es, K. Andresen, A.J. FosterInstitue of Biotechnology and Drug Research (IBWF), Plant protection,Kaiserslautern, GermanyThe Magnaporthe oryzae FLB3 and FLB4 transcription factor-encod<strong>in</strong>ggenes were deleted. Analysis of resultant mutants demonstrated that Flb4pis essential for spore formation and that stra<strong>in</strong>s lack<strong>in</strong>g this gene had‘fluffy’ colony morphology due to an <strong>in</strong>ability to complete conidiophoreformation. Meanwhile Flb3p is required for normal levels of aerialmycelium formation. Us<strong>in</strong>g microarray analysis we identified genesdependent on both transcription factors. This analysis revealed that thetranscription of several genes encod<strong>in</strong>g prote<strong>in</strong>s previously implicated <strong>in</strong>sporulation <strong>in</strong> Magnaporthe or <strong>in</strong> other filamentous fungi are affected byFLB3 and/or FLB4 deletion. The transcript changes associated withdeletion of FLB3 and FLB4 were also reflected phenotypically: the flb3-mutant which shows reduced transcription of several secreted lipases and<strong>in</strong>creased transcript abundance for melan<strong>in</strong> biosynthetic genes has areduced extracellular lipase activity and <strong>in</strong>creased pigmentation; <strong>in</strong>contrast the flb4-mutant shows reduced transcript abundance for melan<strong>in</strong>biosynthetic genes and is white.FUV005The <strong>in</strong>teraction oft he plant-pathogen Verticilliumlongosporum and its host Brassica napus and <strong>in</strong>sights <strong>in</strong>to theevolutionary orig<strong>in</strong> of the fungal hybrid.S. Braus-Stromeyer*, V.T. Tran, C. Timpner, C. Hoppenau, S. S<strong>in</strong>gh,A. Kühn, H. Kusch, O. Valerius, G. BrausInstitut für Mikrobiologie und Genetik, Abt. Molekulare Mikrobiologie undGenetik, Gött<strong>in</strong>gen, GermanyVerticillium longisporum is a soil-borne fungal pathogen of oilseed rape(Brassica napus). Infection is <strong>in</strong>itiated by hyphae from germ<strong>in</strong>at<strong>in</strong>gmicrosclerotia which <strong>in</strong>vade the plant vascular system through penetrationof the f<strong>in</strong>e roots. We <strong>in</strong>vestigated the reaction of the fungus to xylem sapof the host-plant by differential expression of prote<strong>in</strong>s related to reactiveoxygen stress [1]. Knockdowns of the catalase-peroxidase of V.longisporum were <strong>in</strong>hibited <strong>in</strong> the late phase of disease development. Theevolutionary orig<strong>in</strong> of the cruciferous fungal pathogen, V. longisporum isstill a mystery. It is very closely related to both V. dahliae and V. alboatrumbut possesses some typical characteristics such as long spores,almost double amount of nuclear DNA content and cruciferous hostspecificity. V. longisporum is an example for an early stage of speciationand we show clear evidences for the orig<strong>in</strong> of the fungus. To clarify thehybrid status, we undertook molecular sequence analyses of the <strong>in</strong>ternaltranscribed spacer (ITS) and <strong>in</strong>tergenic spacer (IGS) regions of rDNA ofputative ancestors of V. longisporum. In addition a number of otherstructural genes were analyzed. We found one gene encod<strong>in</strong>g a putativez<strong>in</strong>c f<strong>in</strong>ger transcription factor with two dist<strong>in</strong>ct sequences carry<strong>in</strong>gdifferent markers support<strong>in</strong>g the hybrid orig<strong>in</strong> detection of the fungus. Oneof these sequences is almost identical to that of V. dahliae and the other ishighly similar to the sequence of V. albo-atrum. Currently we aresequenc<strong>in</strong>g V. longisporum to determ<strong>in</strong>e which rearrangements occurreddur<strong>in</strong>g and after the hybridization.1. S S<strong>in</strong>gh, SA Braus-Stromeyer, C Timpner, O Valerius, Av Tiedemann, P Karlovsky, C Druebert,A Polle, and GH. Braus, Molecular. Plant-Microbe Interactions, accepted (2011), DOI:10.1094/MPMI-08-11-0217FUV007The plant pathogenic fungus Heterobasidion produces planthormone-like compounds to elude the plant defenseN. Horlacher* 1 , S. Schrey 1 , J. Nachtigall 2 , R. Hampp 1 , R. Süssmuth 2 , H.-P. Fiedler 11 University Tueb<strong>in</strong>gen, IMIT, Tueb<strong>in</strong>gen, Germany2 TU Berl<strong>in</strong>, Institut für Chemie, Berl<strong>in</strong>, GermanyThe basidiomycete Heterobasidion annosum s.l. is a common pathogen ofconifers <strong>in</strong> the northern hemisphere and is responsible for high annuallosses <strong>in</strong> the forest <strong>in</strong>dustry [1] by caus<strong>in</strong>g the ‘annosum root rot’ [2]. H.annosum s.l. produces a variety of secondary metabolites with differentantibiotic activities e.g. fomannos<strong>in</strong> [3 and 4], fomajor<strong>in</strong> S [5] andfomannox<strong>in</strong> [6]. H. annosum s.l. <strong>in</strong>fects its host trees either via exposedwoody tissues such as wounds or by fungal growth through root-to-rootcontacts or grafts with the next tree.The plants defend themselves aga<strong>in</strong>st the <strong>in</strong>fection by the necrotrophicpathogen H. annosum s.l. [7] by activation of a jasmonic acid / ethylenedependentsignall<strong>in</strong>g pathway, dur<strong>in</strong>g which the expression of the markergene Hel (encod<strong>in</strong>g a Heve<strong>in</strong>-like prote<strong>in</strong>) is <strong>in</strong>duced [8]. This signall<strong>in</strong>gpathway can be suppressed by a prior activation of the salicylic acid (SA)-dependent signall<strong>in</strong>g pathway for which the PR-1 gene (pathogenesisrelated) is a marker gene [9].We found two further compounds which are produced by Heterobasidion<strong>in</strong> liquid medium. 5-formylsalicylic acid (5-FSA) is a compound that hadpreviously only been chemically synthesized and 331HaNZ is an unknowncompound. 5-FSA and 331HaNZ are structural analogues to salicylic acid.We observed that addition of 5-FSA or 331HaNZ promotes the <strong>in</strong>fectionof Norway spruce by Heterobasidion. We have also shown that 5-FSA<strong>in</strong>duces the expression of PR-1 <strong>in</strong> Arabidopsis thaliana and 5-FSA as wellas 331HaNZ repress the expression of Hel gene after fungal <strong>in</strong>fection. Weassume that both compounds repress spruce resistance, result<strong>in</strong>g <strong>in</strong>enhanced <strong>in</strong>fection by Heterobasidion.[1] Woodward, S.; J. Stenlid, R. Karjala<strong>in</strong>en, A. Hüttermann.Heterobasidion annosum: Biology,ecology, impact and control. CAB International, Wall<strong>in</strong>gford, Oxon, UK, 1998[2] Asiegbu, F.O.; A. Adomas & J. Stenlid. Mol Plant Pathol 6: 395-409, 2005[3] Bassett, C.; R.T. Sherwood, J.A. Kepler & P.B. Hamilton. Phytopath 57: 1046-1052, 1967[4] Kepler, J.A.; M.E. Wall, J.E. Mason, C. Bassett, A.T. Mc Phail & G.A. Sim. J Am Chem Soc89: 1260-1261, 1967[5] Donnelly, D.M.X.; J. O'Reilly, J. Polonsky & G.W. Van Eijk. Tetrahedron Lett 23: 5451-5452, 1982[6] Hesl<strong>in</strong>, M.; C. Stuart, M. R., Murchú, P. & D. M. X. Donnelly. Eur. J. For. Path. 13: 11-23, 1983.[7] Korhonen, K. & J. Stenlid. In: Woodward, S., J. Stenlid, R. Karjala<strong>in</strong>en, A. Hüttermann,eds.Heterobasidionannosum:Biology, ecology, impact and control. CAB International, Wall<strong>in</strong>gford,Oxon, UK, 43-71, 1998[8] Hossa<strong>in</strong> Md. M.; F. Sultana, M. Kubota, H. Koyama & M. Hyakumachi. Plant Cell Physiol. 48(12): 1724-1736, 2007[9] Beckers, G. J. M. & S. H. Spoel. Plant Biol. 8: 1-10, 2006FUV008Discover<strong>in</strong>g host specificity candidate genes of Sporisoriumreilianum by genotyp<strong>in</strong>g mixed-variety offspr<strong>in</strong>gT. Wollenberg*, J. Donner, K. Zuther, L. Stannek, J. SchirawskiAlbrecht-von-Haller Institut, Molecular Biology of Plant-MicrobeInteraction, Goett<strong>in</strong>gen, GermanySporisorium reilianumis a biotrophic plant pathogenic basidiomycete thatcauses head smut of maize and sorghum. The fungus exists <strong>in</strong> two varietieswith different host specificity. The sorghum variety (SRS) is fully virulenton sorghum. SRS <strong>in</strong>fection of maize leads to weak symptoms, such asphyllody of the floral parts. The maize variety (SRZ) is fully virulent onmaize, but does not show symptoms on sorghum <strong>in</strong>florescences. Instead,SRZ <strong>in</strong>fection of sorghum leads to the formation of red spots conta<strong>in</strong><strong>in</strong>gphytoalex<strong>in</strong>s on leaves.BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!