20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

70MurNAc-L-Ala-D-Glu-LL-Dap-D-Ala-D-Ala <strong>in</strong>dicat<strong>in</strong>g thatMicrobispora protect itself not by synthesiz<strong>in</strong>g resistant peptidoglycan.Castiglione, F.; Lazzar<strong>in</strong>i, A; Carrano, L.; Corti, E.; Ciciliato, I.; Gastaldo, L.; Candiani, P.; Losi,D.; Mar<strong>in</strong>elli, F.; Selva, E; Parenti, F.; Chemistry and Biology,2008, 15, 22Schäberle, T.F.; Vollmer, W.; Frasch, H.J.; Hüttel, S.; Kulik, A.; Röttgen, M.; von Thaler, A.K.,Wohlleben, W.; Stegmann, E.; Antimicrob Agents Chemother,2011, 55(9)CEP022Interaction and Localisation of the Ser/Thr k<strong>in</strong>ase PknB and theessential two component system YycFG of Staphylococcus aureusP. Hardt* 1 , M. Türck 2 , S. Donat 3 , K. Ohlsen 3 , G. Bendeas 4 , H.-G. Sahl 1 ,G. Bierbaum 2 , T. Schneider 11 Institut für Mediz<strong>in</strong>ische Mikrobiologie, Immunologie und Parasitologie,Pharmazeutische Mikrobiologie, Bonn, Germany2 Institut für Mediz<strong>in</strong>ische Mikrobiologie, Immunologie und Parasitologie,Mediz<strong>in</strong>ische Mikrobiologie, Bonn, Germany3 Institut für Molekulare Infektionsbiologie, Würzburg, Germany4 Institut für Pharmazie, Institut für pharmazeutische Chemie, Bonn, GermanyProkaryotic signal transduction pathways regulate cellular functions <strong>in</strong>response to environmental cues and enable bacteria to react immediately tochang<strong>in</strong>g conditions like antibiotic stress. Besides two-componentregulatory systems (TCS), one-component regulatory systems (OCS)represent one of the most abundant signal<strong>in</strong>g systems <strong>in</strong> prokaryotes.These OCS <strong>in</strong>clude eukaryotic-like ser<strong>in</strong>e/threon<strong>in</strong>e k<strong>in</strong>ases (ESTKs) andphosphatases (ESTPs), which are <strong>in</strong>creas<strong>in</strong>gly recognised as importantregulators of major processes such as cell wall metabolism and division,virulence/ bacterial pathogenesis and spore formation. One suchESTK/ESTP-couple has recently been identified <strong>in</strong> Staphylococcus aureusdesignated PknB/YloO [1]. The extracellular sensor part of the k<strong>in</strong>aseconta<strong>in</strong>s three daisy-cha<strong>in</strong>ed PASTA-doma<strong>in</strong>s assumed to be capable ofb<strong>in</strong>d<strong>in</strong>g peptidoglycan subunits, suggest<strong>in</strong>g that PknB monitors thecoord<strong>in</strong>ated assembly of peptidoglycan biosynthesis and cell division. Thesignal recognised by PknB has not been identified so far.To further <strong>in</strong>vestigate the role of PknB we analysed the <strong>in</strong>terplay with theessential YycFG TCS on the molecular level and show phosphorylation ofthe response regulator YycF. The YycFG system is <strong>in</strong>volved <strong>in</strong> the controlof peptidoglycan metabolism <strong>in</strong> S. aureus and both, PknB-GFP and YycG-GFP co-localize at the septum, the site of active cell wall biosynthesis <strong>in</strong>cocci. This makes an <strong>in</strong>teraction with the cell wall precursor lipid II andsubunits thereof, very likely. Determ<strong>in</strong>ation of the b<strong>in</strong>d<strong>in</strong>g parameters toselected lipid II variants, <strong>in</strong>clud<strong>in</strong>g amidated lipid II and subunits, us<strong>in</strong>gquartz crystal microbalance (QCM) biosensor technique will shed lightonto the signal recognized by PknB.[1] Donat S, Streker K, Schirmeister T, Rakette S, Stehle T, Liebeke M, Lalk M, Ohlsen K. (2009).Transcriptome and functional analysis of the eukaryotic-type ser<strong>in</strong>e/threon<strong>in</strong>e k<strong>in</strong>ase PknB <strong>in</strong>Staphylococcus aureus. J Bacteriol. 191(13):4056-69.CEP023New <strong>in</strong>sights <strong>in</strong>to the regulation of the phage shock system <strong>in</strong> E. coliH. Osadnik*, T. BrüserLeibniz Universität, Institut für Mikrobiologie, Hannover, GermanyThe phage shock system is a membrane stress sensor and effector systemof E. coli, compris<strong>in</strong>g seven genes <strong>in</strong> three operons. Some of the <strong>in</strong>duc<strong>in</strong>gsignals <strong>in</strong>clude addition of 10% ethanol, osmotic upshift, severe heatshock, misfolded membrane prote<strong>in</strong>s and disturbance of lipid biogenesis.Stress leads to up-regulation of the systems’ genes, namely the geneencod<strong>in</strong>g for the phage shock prote<strong>in</strong> A (PspA), a prote<strong>in</strong> with largecoiled-coil doma<strong>in</strong>s. Essential parts of the system, especially homologuesof PspA, are conserved and widespread among bacteria, archaea andplastids of higher plants, where the prote<strong>in</strong> seems to be responsible forthylakoid membrane formation and organization.S<strong>in</strong>ce PspA production is strongly <strong>in</strong>duced whenever the <strong>in</strong>tegrity of the<strong>in</strong>ner membrane is at stake, PspA is thought to exhibit a membranestabiliz<strong>in</strong>g function via direct b<strong>in</strong>d<strong>in</strong>g to the <strong>in</strong>ner membrane leaflet. Whileit is well established that PspA forms multimeric complexes <strong>in</strong> vivo to doso, its mechanism of action is still poorly understood, as well as theregulation of the system itself.The cellular PspA-level is ma<strong>in</strong>ly regulated by a negative feedback-like<strong>in</strong>teraction of PspA with the systems’ activator prote<strong>in</strong> PspF. The <strong>in</strong>tegralmembrane prote<strong>in</strong>s PspB and PspC relay stress signals via direct<strong>in</strong>teraction with PspA, lead<strong>in</strong>g to the activation of PspF and thereforehigher PspA-levels.With our new data we provide improved and ref<strong>in</strong>ed <strong>in</strong>sights <strong>in</strong>to theregulatory aspects of the Psp-regulon, lead<strong>in</strong>g to a better understand<strong>in</strong>g ofa complex membrane stress system.CEP025Recovery of cell wall fragments <strong>in</strong> Bacillus subtilis:Characterisation of D-Glu-mDAP carboxypeptidase andMurNAc-6P etheraseA. Duckworth*, A. Schneider, S. Unsleber, C. MayerIMIT, Biotechnologie/Mikrobiologie, Tüb<strong>in</strong>gen, GermanyIn E. coli and other Gram negative bacteria, the peptidoglycan fragmentsreleased dur<strong>in</strong>g cell growth and division are efficiently reutilised andrecycled. In contrast, cell wall recycl<strong>in</strong>g <strong>in</strong> the Gram positive bacterium B.subtilis has not been thoroughly studied to date. However, more than 30autolys<strong>in</strong>s have been identified <strong>in</strong> this organism that are responsible forcleavage of peptidoglycan and release fragments <strong>in</strong>to the medium dur<strong>in</strong>gdifferent developmental processes. We are characteris<strong>in</strong>g the cell wallturnover products of B. subtilis and are <strong>in</strong>vestigat<strong>in</strong>g an operon of sixgenes (ybbI, ybbH, ybbF, amiE, nagZ, ybbC) <strong>in</strong>volved <strong>in</strong> peptidoglycanrecycl<strong>in</strong>g. NagZ and AmiE have been functionally characterised recently(Litz<strong>in</strong>ger et al. 2010. J Bacteriol.;192(12):3132-43). NagZ is an Exo-GlcNAc'ase that cleaves the glycosidic bond between non-reduc<strong>in</strong>gGlcNAc and MurNAc residues of GlcNAc-MurNAc-peptides(muropeptides), and AmiE subsequently cleaves the MurNAc-peptidebond. Here we report the characterisation of YbbC and YbbI. YbbC wasshown to cleave the products of the AmiE reaction, such as L-Ala-D-GlumDAPtripeptide. NagZ, AmiE and YbbC, which are secreted, are<strong>in</strong>volved <strong>in</strong> the sequential digest of muropeptides <strong>in</strong> the cell wallcompartment. The result<strong>in</strong>g am<strong>in</strong>o acids mDAP, L-Ala-D-Glu dipeptideand am<strong>in</strong>o sugar monomers MurNAc and GlcNAc are imported <strong>in</strong>to thecytoplasm by <strong>in</strong>dividual transporters. YbbI is a MurNAc-6P etherase asrevealed by the Morgan-Elson assay. MurNAc is phosphorylated toMurNAc-6P by a PTS transporter and then converted to GlcNAc-6P by thecytoplasmic etherase YbbI. Thus, the ybbIHFEDC cluster is required forthe recycl<strong>in</strong>g of cell wall fragments <strong>in</strong> B. subtilis.CEP026The role of Lipoprote<strong>in</strong> STM 3690 <strong>in</strong> the biogenesis of thetrimeric autotransporter adhes<strong>in</strong> SadA <strong>in</strong> SalmonellaI. Gr<strong>in</strong>* 1 , A. Felipe-Lopez 2 , G. Sauer 1 , H. Schwarz 1 , M. Hensel 2 , D. L<strong>in</strong>ke 11 MPI für Entwicklungsbiologie, Prote<strong>in</strong>evolution, Tüb<strong>in</strong>gen, Germany2 Universität Osnabrück, Mikrobiologie, Osnabrück, GermanyQuestion: Salmonella is a major agent <strong>in</strong> human food-borne diseases.Among the prote<strong>in</strong>s expressed on the surface of the cells, adhes<strong>in</strong>s,prote<strong>in</strong>s which allow the bacteria to stick to biotic and abiotic surfaces, arekey virulence factors.From the large family of adhesion prote<strong>in</strong>s, the trimeric autotransporteradhes<strong>in</strong>s (TAA) form a dist<strong>in</strong>ct subgroup. TAAs are non-fimbrial, nonpilus,homotrimeric adhes<strong>in</strong>s which are widespread among proteobacteria.They have a modular doma<strong>in</strong> structure of extended coiled-coil stretches<strong>in</strong>terspersed with globular doma<strong>in</strong>s. The extracellular part of theautotransporter, which can be as large as 100 kDa and above, istransported over the outer membrane of gram-negative bacteria through itsown membrane anchor by an unknown mechanism. Several of theautotransporter operons <strong>in</strong> enterobacteria also conta<strong>in</strong> a small periplasmiclipoprote<strong>in</strong> of unknown function upstream of the ma<strong>in</strong> TAA gene. Thelocation <strong>in</strong> the operon suggests a support<strong>in</strong>g role <strong>in</strong> the fold<strong>in</strong>g and exportof the passenger doma<strong>in</strong>. The aim of the presented work was to ga<strong>in</strong><strong>in</strong>sight <strong>in</strong>to the structure of the lipoprote<strong>in</strong> and to elucidate its function androle <strong>in</strong> the autotransport of SadA.Methods: Bio<strong>in</strong>formatics, Mass spectrometry, Immunofluorescence,FACS, Phage Display, X-Ray CrystallographyResults: Us<strong>in</strong>g GCView, a bio<strong>in</strong>formatics tool for visualiz<strong>in</strong>g genomiccontext for homology search results (1) we could show that the operon ofSTM 3690 and SadA is conserved <strong>in</strong> composition and genomic location <strong>in</strong>Enterobacteria.We were able to verify that STM 3690 is a periplasmic lipoprote<strong>in</strong> bysubcellular fractionation of bacterial cells express<strong>in</strong>g the prote<strong>in</strong>.Furthermore we showed the correct lipid modification of the N-Term<strong>in</strong>usby mass spectrometry.Cells express<strong>in</strong>g either SadA and STM 3690 show a higher amount ofSadA on the surface compared to cells which express only SadA.We used Phage Diplay to screen for possible <strong>in</strong>teraction partners of thelipoprote<strong>in</strong>. This was complemented by pulldowns as well as <strong>in</strong> vivocrossl<strong>in</strong>ks <strong>in</strong> Salmonella.Conclusions: Prelim<strong>in</strong>ary data suggests a function as chaperone dur<strong>in</strong>g theexport process.1) Gr<strong>in</strong> I., L<strong>in</strong>ke D. GCView: the genomic context viewer for prote<strong>in</strong> homology searches. NucleicAcids Res. 2011, 39, W353-W356.BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!