20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

198demonstrat<strong>in</strong>g its suitability as a selection marker. The <strong>in</strong>troduction of afunctional promoter of M. adhaerens HP15 <strong>in</strong>to the IVET vector and itssubsequent transformation <strong>in</strong>topyrB-deficient mutant allowed itscomplementation. Transformants express<strong>in</strong>g the pyrB gene and lacZ grew<strong>in</strong> absence of uracil <strong>in</strong>dicat<strong>in</strong>g that the system wass functional. Thestandardization of the IVET screen<strong>in</strong>g is currently be<strong>in</strong>g tested. Promis<strong>in</strong>ggenes obta<strong>in</strong>ed will be cloned, mutagenized, and characterized <strong>in</strong> terms oftheir role <strong>in</strong> diatom-bacteria <strong>in</strong>teraction. Results of this study willcontribute to a better understand<strong>in</strong>g of the molecular mechanisms ofdiatom-bacteria <strong>in</strong>teractions.RSP015Functional analyses of small RNAs <strong>in</strong> Agrobacterium tumefaciensA. Overlöper* 1 , P. Möller 1 , B. Voss 1,2 , W. Hess 2 , C. Sharma 3 , F. Narberhaus 11 Ruhr-University, Biology of Microorganisms, Bochum, Germany 2 Institute ofBiology III, University Freiburg, Freiburg, Germany3 Institute for Molecular Infection Biology, University Würzburg, Würzburg,GermanyOver the last decade, sRNAs have been recognized as widespreadregulators of gene expression <strong>in</strong> bacteria (1). The largest and mostextensively studied set of sRNAs act through base pair<strong>in</strong>g with targetRNAs, usually modulat<strong>in</strong>g the translation and stability of mRNAs (2).Us<strong>in</strong>g a comparative bio<strong>in</strong>formatic approach (3) we identified diversesRNAs <strong>in</strong> the plant pathogen Agrobacterium tumefaciens. One sRNA,called AbcR1, controls the expression of at least three ABC transportersamong them the periplasmic b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> of the GABA transporter. It isthe first described bacterial sRNA that controls uptake of a plant-generatedsignal<strong>in</strong>g molecule (4). The molecular details of the sRNA-mRNA<strong>in</strong>teraction will be presented.By us<strong>in</strong>g a differential RNA sequenc<strong>in</strong>g (dRNA-seq) technology, wediscovered many new sRNA on all four A. tumefaciens replicons, thecircular chromosome, the l<strong>in</strong>ear chromosome, the At-plasmid and the Tiplasmid(5). Northern blot analyses revealed that several sRNAs weredifferentially expressed <strong>in</strong> response to different growth conditions. OnesRNA from the Ti-plasmid was massively <strong>in</strong>duced under virulenceconditions. Experiments to identify targets of selected sRNAs are underway.1. Narberhaus, F. and J. Vogel, Regulatory RNAs <strong>in</strong> prokaryotes: here, there and everywhere. MolMicrobiol, 2009. 74(2): p. 261-9.2. Waters, L.S. and G. Storz, Regulatory RNAs <strong>in</strong> bacteria. Cell, 2009. 136(4): p. 615-28.3. Voss, B., et al., Biocomputational prediction of non-cod<strong>in</strong>g RNAs <strong>in</strong> model cyanobacteria. BMCGenomics, 2009. 10: p. 123.4. Wilms, I., et al., Small RNA-mediated control of the Agrobacterium tumefaciens GABA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>.Mol Microbiol, 2011. 80(2): p. 492-506.5. Wilms, I., et al., Deep sequenc<strong>in</strong>g uncovers numerous small RNAs on all four replicons of the plantpathogen Agrobacterium tumefaciens. RNA Biology, <strong>in</strong> pressRSP016Signal transduction <strong>in</strong> the thermoacidophilic crenarchaeonSulfolobus acidocaldariusJ. Reimann*, K. Lassak, S. Khadouma, S.-V. AlbersMax Planck Institute for Terrestrial Microbiology, Molecular Biology ofArchaea, Marburg, GermanySignal transduction from extracellular stimuli to the <strong>in</strong>side and with<strong>in</strong> thecell is essential for survival of microorganisms. In this process prote<strong>in</strong>k<strong>in</strong>ases and phosphatases often play a key-role and are found <strong>in</strong> all threedoma<strong>in</strong>s of life. These enzymes catalyze one of the most importantposttranslational modifications, the reversible phosphorylation anddephosphorylation of prote<strong>in</strong>s. Whereas <strong>in</strong> many Euryarchaeota both,potential histid<strong>in</strong>e k<strong>in</strong>ases and Ser/Thr/Tyr k<strong>in</strong>ases, were found, <strong>in</strong> theCrenarchaeota just the latter are present.To date, the knowledge about signal transduction pathways, the <strong>in</strong>duc<strong>in</strong>gconditions and <strong>in</strong>volved prote<strong>in</strong>s <strong>in</strong> the Crenarchaeota is rather scarce.Therefore, we want to <strong>in</strong>vestigate the processes of signal transduction <strong>in</strong>Sulfolobus acidocaldarius. The advantage of this important crenarchaealmodel organism is the availability of various genetic tools to perform<strong>in</strong>vivoand<strong>in</strong> vitrostudies. These tools were used to exam<strong>in</strong>eautophosphorylation of some prote<strong>in</strong> k<strong>in</strong>ases and phosphorylation ofpotential <strong>in</strong>teraction partners. Experimental <strong>in</strong>vestigations revealed aconnection between motility via the archaeal flagellum and different signaltransduction prote<strong>in</strong>s <strong>in</strong> S. acidocaldarius. These results underl<strong>in</strong>e theimportance of prote<strong>in</strong> phosphorylation <strong>in</strong> cellular processes of theArchaea.RSP017NreA, the third component of the three-component systemNreABC of Staphylococcus carnosusM. S<strong>in</strong>genstreu*, S. Nilkens, G. UndenJohannes Gutenberg University, Institute for Microbiology and W<strong>in</strong>eResearch, AG Unden, Ma<strong>in</strong>z, GermanyIn the facultative anaerobic Staphylococcus carnosus the NreABC threecomponent system is required for <strong>in</strong>itiation of nitrate respiration [1]. NreA,NreB, and NreC are encoded with<strong>in</strong> one operon (nreABC). The twocomponentsystem NreBC is <strong>in</strong>volved <strong>in</strong> O 2 sens<strong>in</strong>g. NreB acts as a directoxygen sensor, and the regulator NreC <strong>in</strong>duces the expression of narGHJIencod<strong>in</strong>g nitrate reductase under anaerobic conditions [1].Oxygen sens<strong>in</strong>g by NreB is based on the conversion of the [4Fe-4S] 2+cluster to a [2Fe-2S] 2+ cluster by O 2 followed by complete degradation andformation of FeS-less apoNreB [2].The function of the third component, NreA, was analyzed. NreA is a GAFdoma<strong>in</strong> prote<strong>in</strong>. Deletion of NreA leads to a permanent activation ofnitrate respiration.S<strong>in</strong>gle-po<strong>in</strong>t mutants <strong>in</strong> NreA were obta<strong>in</strong>ed with either loss of nitrate<strong>in</strong>duction, or aerobic derepression, suggest<strong>in</strong>g that NreA controls NreBCfunction <strong>in</strong> response to oxygen and nitrate availability.[1] Kamps et al. (2004) Mol. Microbiol. 52, 713-723[2] Müllner et al. (2008) Biochemistry 47, 13921-13932RSP018B<strong>in</strong>d<strong>in</strong>g properties of the transcriptional regulator AlsR ofBacillus subtilisE. Härtig*, C. Frädrich, K. HaufschildtTU Braunschweig, Microbiology, Braunschweig, GermanyThe transcriptional regulator AlsR is essential for alsSD expression <strong>in</strong>Bacillus subtilis. The alsSD expression is activated <strong>in</strong> response tofermentative growth conditions, addition of acetate, low pH <strong>in</strong> the growthmedium and aerobic stationary growth. The alsSD operon encodes theacetolactate synthase and -decarboxylase catalys<strong>in</strong>g the production ofaceto<strong>in</strong> from pyruvate. The AlsR regulator is a member of the LysR-typetranscriptional regulators (LTTR) composed of two doma<strong>in</strong>s: an N-term<strong>in</strong>al DNA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> with a w<strong>in</strong>ged HTH motif and a C-term<strong>in</strong>alregulatory doma<strong>in</strong> which is <strong>in</strong>volved <strong>in</strong> co-<strong>in</strong>ducer b<strong>in</strong>d<strong>in</strong>g andoligomerization.We analyzed the relevance of s<strong>in</strong>gle am<strong>in</strong>o acid residues of the DNAb<strong>in</strong>d<strong>in</strong>gdoma<strong>in</strong> by site directed mutagenesis and <strong>in</strong> vivo functionalanalysis of produced AlsR mutant prote<strong>in</strong>s <strong>in</strong> an <strong>in</strong> vivo complementationsystem. Here, mutated alsR genes were <strong>in</strong>tegrated <strong>in</strong>to the amyE locus ofan B. subtilis alsR knock out mutant stra<strong>in</strong> and expressed under the controlof the xylose-<strong>in</strong>ducible xylA promoter. AlsR activity was monitored by ß-galactosidase activities derived from an AlsR-dependent alsS-lacZ reportergene fusion. Several AlsR mutants tested showed reduced alsS-lacZexpression <strong>in</strong> vivo. In addition, we produced and purified the AlsR mutantprote<strong>in</strong>s as AlsR-Strep fusion prote<strong>in</strong>s and analyzed their <strong>in</strong> vitro b<strong>in</strong>d<strong>in</strong>gability by gel retardation analyses.Us<strong>in</strong>g DNase I footpr<strong>in</strong>t analyses AlsR b<strong>in</strong>d<strong>in</strong>g regions were identified <strong>in</strong>the alsS promoter. A detailed analysis of the DNA sequence revealedseveral potential pal<strong>in</strong>dromic b<strong>in</strong>d<strong>in</strong>g sites conta<strong>in</strong><strong>in</strong>g a T-N 11-A coremotif typical for LTTR prote<strong>in</strong>s. To identify the DNA sequences necessaryfor AlsR b<strong>in</strong>d<strong>in</strong>g we changed several TA bases with<strong>in</strong> the proposed AlsRb<strong>in</strong>d<strong>in</strong>g region to GG. For this purpose a p-86alsS-lacZ reporter genefusion with 86 bp promoter sequences upstream the transcriptional startsite were used. The ß-galactosidase activities mediated by those mutantpromoters were determ<strong>in</strong>ed and compared to the activity of B. subtiliscarry<strong>in</strong>g the wild type alsS-lacZ fusion. In order to directly relate theresults of the <strong>in</strong> vivo tested mutated promoter to AlsR b<strong>in</strong>d<strong>in</strong>g, we alsoemployed gel retardation assays.RSP019The LuxR solo PluR of Photorhabdus lum<strong>in</strong>escens sensesPLAI-1, a novel endogenous signal<strong>in</strong>g moleculeS. Brameyer* 1 , A.O. Brachmann 2 , Q. Zhou 2 , H. Bode 2 , R. Heermann 11 Ludwig-Maximilians-Universität München, Mikrobiologie, München, Germany2 Goethe-Universität Frankfurt, Institut für Molekulare Biowissenschaften,Frankfurt am Ma<strong>in</strong>, GermanyCell-to-cell communication via acyl-homoser<strong>in</strong>e lactones (AHL) is wellstudied <strong>in</strong> many Gram-negative bacteria. The prototypical communicationsystem consists of a LuxI-type auto<strong>in</strong>ducer synthase and a LuxR-typereceptor that detects the endogenously produced signal. The symbiotic andentomopathogenic enteric bacterium Photorhabdus lum<strong>in</strong>escens harborsthe plenty of 39 LuxR-like receptors, but lacks any LuxI-type auto<strong>in</strong>ducersynthase and is unable to produce AHL. Here we show that one of theseLuxR solos, Plu4562 (PluR), detects an endogenously produced signal<strong>in</strong>gmolecule (PLAI-1) that is not an AHL, but a 2-pyrone derivative. Wetested different 2-pyrones for <strong>in</strong>duction of plu4568-promoter activity, andshowed that a novel class of 2-pyrones named photopyrones is producedby different Photorhabdus species are the specific signal for PluR. Hence asignal<strong>in</strong>g function for the chemical widespread group of pyrones wasidentified for the first time for P. lum<strong>in</strong>escens. Via PluR, expression of theplu4568-plu4563 operon is activated, which encodes a putative synthesispathway correlated with cell clump<strong>in</strong>g. Expression of the plu4568-plu4563operon <strong>in</strong>duced cell clump<strong>in</strong>g <strong>in</strong> P. lum<strong>in</strong>escens by addition of PLAI-1 aswell as <strong>in</strong> E. coli when <strong>in</strong>duced heterologously. PLAI-1-dependent cell-tocellcommunication and the result<strong>in</strong>g cell clump<strong>in</strong>g seem to be importantfor colonization of the nematodes by P. lum<strong>in</strong>escens.BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!