20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

197Through <strong>in</strong>tensive <strong>in</strong>vestigations aim<strong>in</strong>g at <strong>in</strong>creased production, C.glutamicum has become a model organism for systems biology as well [2].We will present a targeted approach for direct quantification of keyenzymes from the central carbon metabolism <strong>in</strong> C. glutamicum rawextracts by high performance liquid chromatography coupled tandem massspectrometry [LC-MS/MS, 3]. Focus<strong>in</strong>g on glycolysis, TCA, anaplerosisand glyoxylate shunt our method provides a quantitative overview of theenzymes build<strong>in</strong>g the core metabolic pathways <strong>in</strong> C. glutamicum. Ametabolic label<strong>in</strong>g strategy with the stable nitrogen isotope 15 N is used toovercome measurement errors orig<strong>in</strong>at<strong>in</strong>g from sample handl<strong>in</strong>g and trypticdigestion of prote<strong>in</strong> extracts by isotope dilution mass spectrometry [IDMS, 4].Sampl<strong>in</strong>g batch cultivations of C. glutamicum <strong>in</strong> microtiter plates, ourstudy comprises proteome adaptations to different growth phases andalternative carbon sources. Results show massive reconstitutions of prote<strong>in</strong>levels well agree<strong>in</strong>g to known changes of metabolic fluxes. Furthermore,we conducted time resolved measurements of prote<strong>in</strong> expression aftermetabolic switch from glycolytic to gluconeogenetic carbon sources under<strong>in</strong>dustrial relevant conditions <strong>in</strong> stirred tank reactors. Significant changes<strong>in</strong> prote<strong>in</strong> levels could be detected with<strong>in</strong> 15 m<strong>in</strong> after substrate pulse.In conclusion we will present a rapid and reliable methodology forquantitative analysis of prote<strong>in</strong> expression and dynamics provid<strong>in</strong>g new<strong>in</strong>sights <strong>in</strong>to metabolic regulation of C. glutamicum.[1] Eggel<strong>in</strong>g, L., Bott, M.,Handbook of Corynebacterium glutamicum, Academic Press, Inc., BocaRaton, FL 2005.[2] Wendisch, V. F., Bott, M., Kal<strong>in</strong>owski, J., Oldiges, M., Wiechert, W., Emerg<strong>in</strong>gCorynebacterium glutamicum systems biology. J Biotechnol 2006, 124, 74-92.[3] Lange, V., Picotti, P., Domon, B., Aebersold, R., Selected reaction monitor<strong>in</strong>g for quantitativeproteomics: a tutorial. Mol Syst Biol 2008, 4, 222.[4] Mayya, V., K Han, D., Proteomic applications of prote<strong>in</strong> quantification by isotope-dilution massspectrometry. Expert Rev Proteomics 2006, 3, 597-610.RSP011Unusual reactions <strong>in</strong>volved <strong>in</strong> cyclohexanecarboxylate formationdur<strong>in</strong>g crotonate fermentation <strong>in</strong> Syntrophus aciditrophicusL. Ebelt* 1 , J.W. Kung 1 , A. Schmidt 2 , M. Boll 11 Universität Leipzig, Institut für Biochemie, Leipzig, Germany2 Universität Konstanz, Dept für Biologie - Mikrobielle Ökologie,Konstanz, GermanyThe obligately anaerobic Deltaproteobacterium Syntrophus aciditrophicuscan feed on crotonate as its sole carbon and electron source without asyntrophic partner. The ma<strong>in</strong> products of the fermentation pathway areacetate and cyclohexanecarboxylate [1]. The reduc<strong>in</strong>g equivalents formeddur<strong>in</strong>g crotonate oxidation to acetate are recycled by concomitantreduction of crotonate <strong>in</strong> reverse -oxidation-like reactions of the benzoyl-CoA degradation pathway. The transiently formed benzoyl-CoA isbelieved to serve as electron acceptor for recycl<strong>in</strong>g redox equivalentsyield<strong>in</strong>g six-electron reduced cyclohexanecarboxyl-CoA. We demonstratethat disproportionation reactions of cyclohexa-1,5-diene-1-carboxyl-CoA(1,5-dienoyl-CoA) and cyclohex-1-ene-1-carboxyl-CoA (1-monoenoyl-CoA) are <strong>in</strong>volved <strong>in</strong> benzoyl-CoA and cyclohexanecarboxyl-CoAformation. These reactions are most likely catalyzed by tungstenconta<strong>in</strong><strong>in</strong>g class II benzoyl-CoA reductases [2]. The cyclohexanecarboxyl-CoA is converted <strong>in</strong>to the end product cyclohexanecarboxylate by athioesterase or a CoA transferase. The endergonic reductivedearomatization of benzoyl-CoA to 1,5-dienoyl-CoA by NADH (G°’ =+58 kJ mol -1 ) can be expla<strong>in</strong>ed by an electron bifurcation mechanism. Wepropose that this reaction is driven by the concomitant reduction of 1,5-dienoyl-CoA to 1-monoenoyl-CoA and/or 1-monoenoyl-CoA tocyclohexanecarboxyl-CoA by NADH to (G°’ < -50 kJ mol-1).[1] Mouttaki, H. et al (2008): Use of benzoate as an electron acceptor bySyntrophusaciditrophicusgrown <strong>in</strong> pure culture with crotonate. Env Microbiol 10(12):3265-3274.[2] Kung, J.W. et al (2010): Reversible Biological Birch Reduction at an Extremely Low RedoxPotential. Proc Nat Acad Sci 132:9850-9856.RSP012Mutational analysis of the transcriptional regulator AlsR ofBacillus subtilisC. Frädrich*, E. HärtigTU Braunschweig, Mikrobiologie, Braunschweig, GermanyAceto<strong>in</strong> formation <strong>in</strong> Bacillus subtilis requires acetolactate synthase and -decarboxylase encoded by the alsSD operon. The alsSD expression isactivated <strong>in</strong> response to fermentative growth conditions, addition ofacetate, low pH <strong>in</strong> the growth medium and aerobic stationary growth. Thetranscriptional regulator AlsR is essential for alsS-lacZ reporter geneexpression under all growth conditions tested. The AlsR regulator is amember of the LysR-type transcriptional regulators (LTTR) and composedof two doma<strong>in</strong>s: an N-term<strong>in</strong>al DNA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> with a w<strong>in</strong>ged HTHmotif and a C-term<strong>in</strong>al regulatory doma<strong>in</strong> which is <strong>in</strong>volved <strong>in</strong> co-<strong>in</strong>ducerb<strong>in</strong>d<strong>in</strong>g and oligomerization.To identify functional relevant am<strong>in</strong>o acid residues for effector-b<strong>in</strong>d<strong>in</strong>gand oligomerization we mutagenized the alsR gene <strong>in</strong> the C-term<strong>in</strong>alregulatory doma<strong>in</strong> and tested the activity of the produced AlsR mutantprote<strong>in</strong>s <strong>in</strong> an <strong>in</strong> vivo complementation system. Here, mutated alsR geneswere <strong>in</strong>tegrated <strong>in</strong>to the amyE locus of a B. subtilis alsR knock out mutantstra<strong>in</strong> and expressed under the control of the xylose-<strong>in</strong>ducible xylApromoter. AlsR activity was monitored by ß-galactosidase activitiesderived from an AlsR-dependent alsS-lacZ reporter gene fusion. SeveralAlsR mutants tested showed reduced alsS-lacZ expression <strong>in</strong> vivo.In addition, we produced and purified the AlsR mutant prote<strong>in</strong>s asTrx/Strep-AlsR fusion prote<strong>in</strong>s and after cleavage with the HRV-3Cprotease we f<strong>in</strong>ally obta<strong>in</strong>ed pure AlsR prote<strong>in</strong>. We analyzed the <strong>in</strong> vitrob<strong>in</strong>d<strong>in</strong>g ability by EMSA analyses and performed <strong>in</strong> vitro transcriptionstudies with the purified AlsR mutant prote<strong>in</strong>s. The am<strong>in</strong>o acid exchangefrom ser<strong>in</strong>e at position 100 of AlsR to alan<strong>in</strong>e <strong>in</strong>activated the AlsR prote<strong>in</strong>for transcriptional activation <strong>in</strong> vivo and <strong>in</strong> vitro. Compared to the wildtype prote<strong>in</strong>, the AlsRS100A mutant prote<strong>in</strong> has a defect <strong>in</strong> DNA-prote<strong>in</strong>complex formation. Whereas, wild type AlsR formed 3 different migrat<strong>in</strong>gcomplexes, AlsRS100A is no longer able to form the slowest migrat<strong>in</strong>gcomplex III <strong>in</strong> EMSA analyses. Therefore, we deduced complex III as thetranscriptional active form. A model of transcriptional active complexformation of AlsR is given.RSP013Interconnectivity between two histid<strong>in</strong>e k<strong>in</strong>ase / responseregulator systems <strong>in</strong> Escherichia coliS. Behr*, L. Fried, T. Kraxenberger, K. JungLudwig-Maximilians-Universität, Biology I - Microbiology, München, GermanyBacteria use two-component systems (TCSs) to encounter fluctuat<strong>in</strong>genvironmental conditions. A membrane-bound histid<strong>in</strong>e k<strong>in</strong>ase (HK)senses a stimulus and transduces it <strong>in</strong>to a cellular signal viaphosphorylation. The transfer of this phosphoryl group to a responseregulator (RR) with DNA-b<strong>in</strong>d<strong>in</strong>g properties mediates the <strong>in</strong>ert reaction,generally an alteration <strong>in</strong> gene expression (1). Based on the limited numberof TCSs <strong>in</strong> Escherichia coli (30/32 HK/RR) it is necessary to coord<strong>in</strong>atecellular adaptions <strong>in</strong> order to respond to a multitude of environmentalsignals. To this end many so called auxiliary prote<strong>in</strong>s have been describedrecently (2). These prote<strong>in</strong>s can be <strong>in</strong>volved <strong>in</strong> sens<strong>in</strong>g, scaffold<strong>in</strong>g orconnect<strong>in</strong>g TCSs and evolved to an emerg<strong>in</strong>g field of bacterial signaltransduction.Although many TCSs <strong>in</strong> Escherichia coli are well characterized, theYehU/YehT and YpdA/YpdB TCSs are largely unknown. Both belong tothe group of LytS/LytR-like TCSs compris<strong>in</strong>g of a HK with GAF-doma<strong>in</strong>and a RR with LytTR-DNA-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>. Based on bio<strong>in</strong>formaticaldata these two TCSs share an am<strong>in</strong>o acid identity of more than 30%. Theyare wide-spread and co-occure <strong>in</strong> many -proteobacteria (3).The characterization of the YehU/YehT and the YpdA/YpdB systemsrevealed reversed transcriptional effects on target genes. Us<strong>in</strong>g thebacterial adenylate cyclase-based two-hybrid system YehS was uncoveredas hub connect<strong>in</strong>g the two TCSs via prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions. Surfaceplasmon resonance measurements with purified YehS and the RRsconfirmed the <strong>in</strong>teractions and suggest an <strong>in</strong>terconnectivity betweenYehU/YehT and YpdA/YpdB.1) Stock et al. (2000): Two-component signal transduction. Annu Rev Biochem 69:183-2152) Jung et al. (2011): Histid<strong>in</strong>e k<strong>in</strong>ases and response regulators <strong>in</strong> networks. Curr. Op<strong>in</strong>. Microbiol. In press3) Szklarczyk et al. (2011): The STRING database <strong>in</strong> 2011: functional <strong>in</strong>teraction networks of prote<strong>in</strong>s,globally <strong>in</strong>tegrated and scored. Nucleic Acids Res.39:561-568RSP014Identification of Mar<strong>in</strong>obacter adhaerens HP15 genes required forthe <strong>in</strong>teraction with the diatom Thalassosira weissflogii by In vivoexpression technologyI. Torres-Monroy*, M. UllrichJacobs University Bremen, Molecular Life Science Research Center,Bremen, GermanyAggregate formation by liv<strong>in</strong>g cells and organic matter <strong>in</strong> the ocean is animportant mechanism that mediates s<strong>in</strong>k<strong>in</strong>g of organic carbon. Diatombacteria<strong>in</strong>teractions play an important role dur<strong>in</strong>g this process by <strong>in</strong>duc<strong>in</strong>gsecretion of different extra-cellular polysaccharides, which <strong>in</strong>crease thesize of mar<strong>in</strong>e aggregates. To study cell-to-cell diatom-bacteria<strong>in</strong>teractions, a bilateral<strong>in</strong> vitromodel system has been establishedconsist<strong>in</strong>g of the diatom Thalassosira weissflogii and the mar<strong>in</strong>e bacteriumMar<strong>in</strong>obacter adhaerens HP15. The bacterium was previously shown tospecifically attach to T. weissflogii cells, to <strong>in</strong>duce transparentexopolymeric particle formation, and to <strong>in</strong>crease aggregation. In addition,it has been shown that M. adhaerens HP15 is genetically accessible, itsgenome has been sequenced, and several bacterial genes potentiallyimportant dur<strong>in</strong>g the <strong>in</strong>teraction are currently be<strong>in</strong>g <strong>in</strong>vestigated. However,genes specifically expressed<strong>in</strong> vivoare still unknown. The aim of this workwas to establish anIn Vivo Expression Technology (IVET) screen<strong>in</strong>g toidentify bacterial genes specifically <strong>in</strong>duced when M. adhaerens HP15<strong>in</strong>teracts with T. weissflogii. The IVET vector was constructed by clon<strong>in</strong>gthe full-size promoterlesslacZ gene downstream of a promoterless pyrBgene, which encodes an essential growth factor fundamental forpyrimid<strong>in</strong>es biosynthesis. A site-directed mutagenesis approach was usedto generate apyrB-deficient mutant <strong>in</strong> M. adhaerens HP15. This mutantwas unable to grow <strong>in</strong> the absence of uracil and <strong>in</strong> presence of the diatom,BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!