20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

194conditions tested. Its 2D structure - as validated by enzymatic prob<strong>in</strong>g -consists of five <strong>in</strong>dependent stem-loops.Overexpression or knockdown of scr5239 results <strong>in</strong> dist<strong>in</strong>ct macroscopicphenotypes. The scr5239 overproduction stra<strong>in</strong> can not express the agaraseDagA and therefore cannot use agar as carbon source (Fig. 1A).Interest<strong>in</strong>gly, the level ofdagAmRNA is not <strong>in</strong>fluenced by scr5239.Nevertheless, we identified a direct and specific <strong>in</strong>teraction of the dagAmRNA with scr5239 us<strong>in</strong>g competitive gel mobility shift assays andchemical prob<strong>in</strong>g. The <strong>in</strong>teraction occurs <strong>in</strong> the cod<strong>in</strong>g region of theagarase mRNA ~ 40 nt downstream of the start codon possibly block<strong>in</strong>gtranslation [2].DagA, however, is not the only target of scr5239. Currently, we <strong>in</strong>vestigatepossible further targets of scr5239 regulation <strong>in</strong> the central metabolism ofS. coelicolor.1. Vockenhuber M-P, Sharma CM, Statt MG, Schmidt D, Xu Z, et al. (2011) Deep sequenc<strong>in</strong>gbasedidentification of small non-cod<strong>in</strong>g RNAs <strong>in</strong> Streptomyces coelicolor. RNA Biol 8.2. Vockenhuber M-P & Suess B, (2011) Streptomyces coelicolor sRNA scr5239 <strong>in</strong>hibits agaraseexpression by direct base pair<strong>in</strong>g to dagA cod<strong>in</strong>g region. Microbiology, acceptedRSV013Two hybrid histid<strong>in</strong>e k<strong>in</strong>ases utilize <strong>in</strong>ter- and <strong>in</strong>tra-prote<strong>in</strong>phosphorylation to regulate developmental progression <strong>in</strong>Myxococcus xanthusA. Schramm*, B. Lee, T. Jeganathan, P.I. HiggsMax Planck Institute Marburg, Ecophysiology, Marburg, GermanySignal transduction <strong>in</strong> bacteria is primarily mediated by histid<strong>in</strong>e-aspartate(His-Asp) phosphorelay [often termed two-component signal transduction(TCST)] prote<strong>in</strong>s. In the paradigm two-component system, the signal<strong>in</strong>gprocess is mediated by two prote<strong>in</strong>s: a histid<strong>in</strong>e prote<strong>in</strong> k<strong>in</strong>ase (HPK) anda response regulator (RR). Signal perception by the HPK leads tophosphorylation of an <strong>in</strong>variant histid<strong>in</strong>e residue, which then serves as aphosphoryl donor for the aspartic acid residue <strong>in</strong> the RR. RRphosphorylation modulates a cellular response. In addition to these simpletwo-component systems, the highly adaptable histid<strong>in</strong>e k<strong>in</strong>ase and receivermodules can be arranged <strong>in</strong>to more sophisticated signal<strong>in</strong>g systems whichprovide additional sites for regulation, and <strong>in</strong>tegration of disperse signals<strong>in</strong>to a common response. These more complex systems are favored <strong>in</strong>microorganisms with complex lifestyles.Upon nutrient limitation, Myxococcus xanthus undergoes a developmentalprocess <strong>in</strong> which the cells of the swarm<strong>in</strong>g community aggregate <strong>in</strong>tomulticellular fruit<strong>in</strong>g bodies and then differentiate <strong>in</strong>to environmentallyresistant spores. M. xanthus encodes a large repertoire of His-Aspphosphorelay prote<strong>in</strong>s, many of which are <strong>in</strong>volved <strong>in</strong> complex signal<strong>in</strong>gpathways. Several of these complex signal<strong>in</strong>g systems have been shown tobe negative regulators of developmental progression, because therespective mutants develop earlier than the wild type.In this study, we demonstrate that two orphan HyHPK, EspA and EspC,<strong>in</strong>timately function together <strong>in</strong> a s<strong>in</strong>gle signal<strong>in</strong>g system. Us<strong>in</strong>g acomb<strong>in</strong>ation of genetic, biochemical, and bio<strong>in</strong>formatic analyses, wedemonstrate that EspC’s k<strong>in</strong>ase region does not act as a phosphor donorfor the Esp system. Interest<strong>in</strong>gly however, EspA’s k<strong>in</strong>ase performs <strong>in</strong>traand<strong>in</strong>ter-molecular phosphorylation of both its own and EspC’s receiverdoma<strong>in</strong>, which together control developmental progression. Additionally,we demonstrate that the Esp system regulates developmental progressionby controll<strong>in</strong>g the proteolytic turnover of MrpC an importantdevelopmental transcription factor. We speculate that this regulateddegradation of MrpC ensures a gradual accumulation of MrpC which isnecessary for coord<strong>in</strong>ated fruit<strong>in</strong>g body formation.RSV014Studies of an Fnr-like transcriptional regulator <strong>in</strong>Gluconobacter oxydans 621HS. Schweikert*, S. Br<strong>in</strong>ger, M. BottForschungszentrum Jülich GmbH, IBG-1: Biotechnologie, Jülich, GermanyThe strictly aerobic -proteobacterium Gluconobacter oxydans is used fora wide variety of <strong>in</strong>dustrial applications such as vitam<strong>in</strong> C synthesis. Onespecial characteristic is the <strong>in</strong>complete oxidation of substrates like sugarsor sugar alcohols <strong>in</strong> the periplasm. Despite its <strong>in</strong>dustrial importance,knowledge of the metabolism of G. oxydans and its regulation, especiallyconcern<strong>in</strong>g the sugar metabolism, is still very scarce. Transcriptionalregulators participat<strong>in</strong>g <strong>in</strong> energy and redox metabolism have not beendescribed yet. In silico analysis of the genome sequence revealed 117genes from 38 different regulator families cod<strong>in</strong>g for putativetranscriptional regulators (TRs).Concern<strong>in</strong>g the genomic proximity to important genes of the carbonmetabolism or the potential function of the members of the TR repertoire,we selected candidates for further exam<strong>in</strong>ation. As a consequence of TRdeletion mutant studies we have chosen an Fnr-like regulator, GOX0974,for further characterisation. Fnr (fumarate-nitrate reduction regulator) <strong>in</strong>Escherichia coli is a switch between aerobic and anaerobic respiration.However, G. oxydans is strictly aerobic and so far no biochemistry foranaerobic respiration has been identified. With regard to these facts, adifferent function of GOX0974 is very likely that does not <strong>in</strong>volve theswitch to anoxic metabolism. The characterisation of this regulator<strong>in</strong>cluded microarray and physiological analyses of GOX0974 to identifytarget genes and phenotype. Additionally the biochemistry of this prote<strong>in</strong>was studied, such as regulator activity and spectral properties. As a result,these experiments gave evidences for a new function of an Fnr-likeprote<strong>in</strong>.The experimental studies of this regulator are the first presented of atranscriptional regulator from Gluconobacter oxydans.Prust, C., Hoffmeister, M., Liesegang, H., Wiezer, A., Fricke, W.F., Ehrenreich, A., Gottschalk, G.,Deppenmeier, U.: Complete genome sequence of the acetic acid bacterium Gluconobacteroxydans.Nat Biotechnol 2005, 23:195-200.RSV015EIIA Ntr of the nitrogen phosphotransferase system regulatesexpression of the pho regulon via <strong>in</strong>teraction with histid<strong>in</strong>ek<strong>in</strong>ase PhoR <strong>in</strong> Escherichia coliD. Lüttmann*, B. GörkeInstitut für Mikrobiologie und Genetik, Allgeme<strong>in</strong>e Mikrobiologie, Gött<strong>in</strong>gen,GermanyIn addition to the phosphotransferase system (PTS) dedicated to sugartransport, many Proteobacteria possess the paralogous PTS Ntr . In the PTS Ntrphosphoryl-groups are transferred from PEP to prote<strong>in</strong> EIIA Ntr via thephosphotransferases EI Ntr and NPr. The PTS Ntr has been implicated <strong>in</strong>regulation of diverse physiological processes <strong>in</strong> different species (1). In E.coli PTS Ntr plays a role <strong>in</strong> potassium homeostasis. In particular, EIIA Ntr<strong>in</strong>creases expression of the genes encod<strong>in</strong>g the high-aff<strong>in</strong>ity K + transporterKdpFABC. To this end, EIIA Ntr b<strong>in</strong>ds to and stimulates activity of histid<strong>in</strong>ek<strong>in</strong>ase KdpD, which <strong>in</strong> turn controls expression of kdpFABC (2). Here weshow that the genes belong<strong>in</strong>g to the phosphate (pho) regulon are likewiseregulated by PTS Ntr . The pho regulon is activated by the two-componentsystem PhoR/PhoB under conditions of phosphate starvation (3). However,maximum expression of the pho genes requires EIIA Ntr . The data reveal adirect <strong>in</strong>teraction between EIIA Ntr and PhoR that ultimately stimulatesphosphorylation of response regulator PhoB. Thus, the PTS Ntr modulatesthe activity of two central sensor histid<strong>in</strong>e k<strong>in</strong>ases by direct <strong>in</strong>teraction.(1) Pflüger-Grau und Görke, 2010 Trends Microbiol.18:205-14(2) Lüttmann et al., 2009 Mol.Microbiol.72:978-94(3) Hsieh and Wanner, 2010 Curr Op<strong>in</strong> Microbiol.13:198-203RSV016A Pseudomonas putida bioreporter stra<strong>in</strong> for the detection ofalkylqu<strong>in</strong>olone-convert<strong>in</strong>g enzymesC. Müller*, S. FetznerWestfälische Wilhelms-Universität Münster, Institut für MolekulareMikrobiologie und Biotechnologie, Münster, GermanyPseudomonas aerug<strong>in</strong>osa is an opportunistic pathogen which regulates itsvirulence via a complex quorum sens<strong>in</strong>g (QS) network. This network<strong>in</strong>corporates N-acylhomoser<strong>in</strong>e lactones as well as 2-heptyl-3-hydroxy-4(1H)-qu<strong>in</strong>olone (the Pseudomonas qu<strong>in</strong>olone signal, PQS) and 2-heptyl-4(1H)-qu<strong>in</strong>olone (HHQ). PQS and HHQ belong to the over 50 different 2-alkyl-4(1H)-qu<strong>in</strong>olone (AQ) compounds which are produced by P.aerug<strong>in</strong>osa. They differ ma<strong>in</strong>ly <strong>in</strong> the length and degree of saturation ofthe alkyl cha<strong>in</strong> and the presence or absence of a hydroxyl substituent at theC3-position [1]. Both PQS and HHQ act as the effectors of the LysR-typetranscriptional regulator PqsR and operate as auto<strong>in</strong>ducers <strong>in</strong> QS [2, 3].We constructed the bioreporter stra<strong>in</strong> P. putida KT2440 [pBBR1-pqsR-P pqsA::lacZ] which constitutively expresses the pqsR gene, whereas the lacZreporter gene is fused to the PqsR-responsive pqsA promoter. Therefore, -galactosidase activity is a function of the PqsR-stimulated transcription,which is dependent on the concentration of HHQ or PQS. The bioreporterstra<strong>in</strong> is highly sensitive for HHQ (EC 50 1.44 ± 0.23 M) and PQS (EC 500.14 ± 0.02 M).To test whether the bioreporter stra<strong>in</strong> can be used for the detection of AQdegrad<strong>in</strong>genzymes, the hod gene cod<strong>in</strong>g for 1H-3-hydroxy-4-oxoqu<strong>in</strong>ald<strong>in</strong>e 2,4-dioxygenase was expressed <strong>in</strong> the bioreporter. Hod is anenzyme <strong>in</strong>volved <strong>in</strong> the qu<strong>in</strong>ald<strong>in</strong>e (2-methylqu<strong>in</strong>ol<strong>in</strong>e) degradationpathway of Arthrobacter nitroguajacolicus Rü61a and catalyzes thecleavage of 1H-3-hydroxy-4-oxoqu<strong>in</strong>ald<strong>in</strong>e to carbon monoxide and N-acetylanthranilate. It has been shown that Hod is also active towards thestructurally related PQS, form<strong>in</strong>g carbon monoxide and N-octanoylanthranilate [4].P. putida KT2440 [pBBR1-pqsR-P pqsA::lacZ] harbor<strong>in</strong>g pME6032-hod wascultivated <strong>in</strong> the presence of different PQS concentrations. The coexpressionof hod significantly decreased the -galactosidase activity <strong>in</strong>comparison to the correspond<strong>in</strong>g control stra<strong>in</strong> which conta<strong>in</strong>ed thepME6032 vector. These results provide proof of pr<strong>in</strong>ciple that thebioreporter stra<strong>in</strong> will be useful for the screen<strong>in</strong>g of AQ-convert<strong>in</strong>genzymes.[1] Lép<strong>in</strong>e F, Milot S, Déziel E, He J, Rahme LG (2004) J. Am. Soc. Mass. Spectrom. 15:862-869[2] Wade DS, Calfee MW, Rocha ER, L<strong>in</strong>g EA, Engstrom E, Coleman JP, Pesci EC (2005) J.Bacteriol. 187:4372-4380[3] Xiao G, Déziel E, He J, Lép<strong>in</strong>e F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, StachelSE, Rahme LG (2006) Mol. Microbiol. 62:1689-1699BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!