20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

108Yfi regulatory system. YfiBNR is shown to function via tightly controlledcompetition between allosteric b<strong>in</strong>d<strong>in</strong>g sites on the three Yfi prote<strong>in</strong>s; anovel regulatory mechanism that is apparently widespread amongperiplasmic signal<strong>in</strong>g systems <strong>in</strong> bacteria. We then show that dur<strong>in</strong>g longtermlung <strong>in</strong>fections of CF patients, activat<strong>in</strong>g mutations <strong>in</strong>vade thepopulation, driv<strong>in</strong>g SCV formation<strong>in</strong> vivo. The identification of mutational“scars” <strong>in</strong> the yfi genes of cl<strong>in</strong>ical isolates suggests that Yfi activity is bothunder positive and negative selection <strong>in</strong> vivo and that cont<strong>in</strong>uousadaptation of the c-di-GMP network contributes to the <strong>in</strong> vivo fitness of P.aerug<strong>in</strong>osa dur<strong>in</strong>g chronic lung <strong>in</strong>fections. These experiments uncover animportant new pr<strong>in</strong>ciple of <strong>in</strong> vivo persistence, and identify the c-di-GMPnetwork as a valid target for novel anti-<strong>in</strong>fectives directed aga<strong>in</strong>st chronic<strong>in</strong>fections.MPV022Methion<strong>in</strong>e sulfoxide reductases defend SalmonellaTyphimurium from oxidative stress and provide bacterialpathogenesisL. Denkel* 1 , S. Horst 1 , S. Fazle Rouf 1 , V. Kitowski 1 , O. Böhm 2 , M. Rhen 3 ,T. Jäger 2 , F.-C. Bange 11 Medical School Hannover, Medical Microbiology and Hospital Epidemiology,Hannover, Germany2 MOLISA GmbH, Magdeburg, Germany3 Karol<strong>in</strong>ska Institute, Microbiology, Tumor and Cellbiology, Stockholm, SwedenQuestion: Oxidative stress produced by the host dur<strong>in</strong>g Salmonella<strong>in</strong>fection converts methion<strong>in</strong>e to a mixture of methion<strong>in</strong>e-S-sulfoxide(Met-S-SO) and methion<strong>in</strong>e-R-sulfoxide (Met-R-SO) [1]. The methion<strong>in</strong>esulfoxide reductases MsrA and MsrB are known to protect bacteria byrepair<strong>in</strong>g oxidized methion<strong>in</strong>e, the former be<strong>in</strong>g specific for the S-formand the latter be<strong>in</strong>g specific for the R-form [1,2]. In this study wecharacterize MsrA, MsrB and a third methion<strong>in</strong>e sulfoxide reductase,MsrC, <strong>in</strong> S.Typhimurium.Methods: For this study we generated deletion mutants <strong>in</strong> S. Typhimuriumus<strong>in</strong>g the one-step <strong>in</strong>activation via homologous recomb<strong>in</strong>ation [3].Phenotypic analyses of S.Typhimurium stra<strong>in</strong>s <strong>in</strong>cluded growthexperiments, challeng<strong>in</strong>g bacteria with exogenous H 2O 2, <strong>in</strong>fection ofactivated RAW 264.7 macrophages and competitive <strong>in</strong>fection of Balb/cJmice with S. Typhimurium. For biochemical characterization of MsrA andMsrB the prote<strong>in</strong>s were overexpressed <strong>in</strong> E. coli, purified and exam<strong>in</strong>ed byNADPH l<strong>in</strong>ked reductase activity assay.Results: Here we show that deletion of msrA <strong>in</strong> S. Typhimurium <strong>in</strong>creasedsusceptibility to exogenous H 2O 2 and reduced bacterial replication <strong>in</strong>sideactivated macrophages and <strong>in</strong> mice. In contrast, an msrB mutant showedthe wild type phenotype. We constructed msrB and msrC mutant stra<strong>in</strong>s<strong>in</strong> a methion<strong>in</strong>e auxotrophic background of S. Typhimurium. The msrCmutant but not the msrB mutant failed to utilize free Met-R-SO.Recomb<strong>in</strong>ant MsrA was active aga<strong>in</strong>st both free and peptidyl Met-S-SO,whereas recomb<strong>in</strong>ant MsrB was only weakly active and specific forpeptidyl Met-R-SO. To dissect the role of MsrC <strong>in</strong> oxidative stressresponse we compared an msrC s<strong>in</strong>gle mutant and an msrBmsrCdouble mutant, and found that MsrC affects survival of S. Typhimuriumfollow<strong>in</strong>g exposure to H 2O 2, growth <strong>in</strong> macrophages and <strong>in</strong> comb<strong>in</strong>ationwith MsrB also <strong>in</strong> mice.Conclusions: Thus <strong>in</strong> summary, we showed that mutants of S.Typhimurium lack<strong>in</strong>g components of the methion<strong>in</strong>e sulfoxide reductasepathway are attenuated <strong>in</strong> vitro when exposed to H 2O 2, <strong>in</strong>side activatedmacrophages and <strong>in</strong> mice. Previously, MsrA and MsrB were considered tobe the pr<strong>in</strong>ciple enzymes of the msr-system that play a role <strong>in</strong> oxidativestress response. Here we show that <strong>in</strong> addition MsrC contributessignificantly to thwart the damage caused by oxidative stress <strong>in</strong>S.Typhimurium [4].1. Weissbach H, Etienne F, Hoshi T, He<strong>in</strong>emann SH, Lowther WT, et al. (2002) Peptide methion<strong>in</strong>esulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys 397:172-178.2. Boschi-Muller S, Olry A, Anto<strong>in</strong>e M, Branlant G (2005) The enzymology and biochemistry ofmethion<strong>in</strong>e sulfoxide reductases. Biochim Biophys Acta 1703:231-238.3. Datsenko KA, Wanner BL (2000) One-step <strong>in</strong>activation of chromosomal genes <strong>in</strong> Escherichia coli K-12us<strong>in</strong>g PCR products. Proc Natl Acad Sci U S A 97:6640-66454. Denkel LA, Horst SA, Rouf SF, Kitowski V, Böhm OM, Rhen M, Jäger T, Bange F-C (2011) Methion<strong>in</strong>eSulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium. PLoS ONE 6(11): e26974.doi:10.1371/journal.pone.0026974MPV023RNase Y of Staphylococcus aureus does not result <strong>in</strong> bulkmRNA decay but <strong>in</strong> activation of virulence genesG. Mar<strong>in</strong>cola* 1 , T. Schäfer 2 , K. Ohlsen 2 , C. Goerke 1 , C. Wolz 11 Interfaculty Institute of Microbiology and Infection Medic<strong>in</strong>e, Tüb<strong>in</strong>gen,Germany2 Institute for Molecular Infection Biology, Würzburg, GermanyBacteria are able to cope with environmental changes by rapidly alter<strong>in</strong>gmRNA expression. Coord<strong>in</strong>ated RNA decay is also essential to allowquick adjustment of RNA levels. Several RNases are <strong>in</strong>volved <strong>in</strong> RNAdecay, process<strong>in</strong>g and maturation of the different RNA species. Sequencehomologues of major Escherichia coli enzymes cannot be identified <strong>in</strong>firmicutes. Recently, an essential endoribonuclease, RNase Y, wasidentified <strong>in</strong> Bacillus subtilis as a key member of the degradosome andproposed to be important for bulk mRNA turnover. Here we analyzed therole of RNase Y homologue rny <strong>in</strong> the human pathogen Staphylococcusaureus. In contrast to B. subtilis, rny is obviously not essential <strong>in</strong> S. aureuss<strong>in</strong>ce rny deletion mutants could readily be obta<strong>in</strong>ed. As a model forRNase Y action, we used the process<strong>in</strong>g of saePQRS operon cod<strong>in</strong>g forcomponents of a global virulence regulatory system. The most prom<strong>in</strong>enttranscript of this operon was shown to be generated by specificendonucleolytic cleavage of a larger autoregulated transcript. In rnymutants the saePQRS process<strong>in</strong>g was no more detectable. To ga<strong>in</strong> <strong>in</strong>sight<strong>in</strong>to the expression of genes affected by RNase Y, gene expressionprofil<strong>in</strong>g between rny mutant and wild type was compared throughmicroarray analysis. As expected for an RNase mutant, the mRNA levelsof several genes/operons were significantly <strong>in</strong>creased <strong>in</strong> the rny mutant.Accord<strong>in</strong>gly, the half life of one of these operons was shown to beextended from 1.1 to 12.7 m<strong>in</strong>. However, the half-lifes of other mRNAspecies, <strong>in</strong>clud<strong>in</strong>g virulence genes and regulators such as agr, were notsignificantly altered <strong>in</strong> the rny mutant. This suggests that <strong>in</strong> S. aureusRNAse Y does not lead to decay of bulk RNA but rather <strong>in</strong>fluence mRNAexpression <strong>in</strong> a tightly controlled regulatory manner. Interest<strong>in</strong>gly, therewere many genes down-regulated <strong>in</strong> the rny mutant. Among those genes,which are presumably controlled by RNase Y <strong>in</strong> an <strong>in</strong>direct way, we couldidentify various known to be <strong>in</strong>volved <strong>in</strong> the pathogenesis of S. aureus.The promoter activities of those virulence genes (e.g. hlg and spa) were <strong>in</strong>deedseverely impaired <strong>in</strong> the rny mutants. RNase Y was moreover required for fullvirulence <strong>in</strong> a mur<strong>in</strong>e S. aureus bacteremia model. In summary, <strong>in</strong> S. aureusRNase Y is essential for coord<strong>in</strong>ated activation of virulence genes but does notlead to bulk RNA decay as shown <strong>in</strong> B. subtilis.MPV024sarA negatively regulates Staphylococcus epidermidis biofilmformation by modulat<strong>in</strong>g expression of 1 MDa extracellularmatrix b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> and autolysis dependent release ofeDNAM. Christner, M. Busch, C. He<strong>in</strong>ze, M. Kotas<strong>in</strong>ska, G. Franke, H. Rohde*UKE Hamburg-Eppendorf, Mediz<strong>in</strong>ische Mikrobiologie, Hamburg, GermanyBiofilm formation is essential for Staphylococcus epidermidispathogenicity <strong>in</strong> implant-associated <strong>in</strong>fections. Nonetheless, largeproportions of <strong>in</strong>vasive S. epidermidis isolates fail to show accumulativebiofilm growth <strong>in</strong> vitro. We here tested the hypothesis that this apparentparadox is related to the existence of superimposed regulatory systemssuppress<strong>in</strong>g a multi-cellular biofilm life style. Transposon mutagenesis ofcl<strong>in</strong>ical significant but biofilm negative S. epidermidis 1585 was used toisolate a biofilm positive mutant carry<strong>in</strong>g a Tn917 <strong>in</strong>sertion <strong>in</strong> sarA, chiefregulator of staphylococcal virulence. Genetic analysis found that<strong>in</strong>activation of sarA <strong>in</strong>duced biofilm formation via over-expression ofgiant 1 MDa extracellular matrix b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> (Embp), serv<strong>in</strong>g as an<strong>in</strong>tercellular adhes<strong>in</strong>. In addition to Embp, augmented extracellular DNA(eDNA) release significantly contributed to biofilm formation <strong>in</strong> mutant1585sarA. Increased eDNA amounts <strong>in</strong>directly resulted from upregulationof metalloprotease SepA, lead<strong>in</strong>g to boosted process<strong>in</strong>g ofmajor autolys<strong>in</strong> AtlE, <strong>in</strong> turn result<strong>in</strong>g <strong>in</strong> augmented autolysis and releaseof chromosomal DNA . Hence, this study identifies sarA as a negativeregulator of Embp- and eDNA dependent biofilm formation, l<strong>in</strong>k<strong>in</strong>g SepAmediatedescape from defens<strong>in</strong> dermicid<strong>in</strong>e with biofilm related protectionfrom phagocytosis. Our data establish a central role of sarA as a regulatorensur<strong>in</strong>g S. epidermidis adaptation to hostile environments.MPV025CspA of Borrelia burgdorferi is a regulator of the alternativepathwayA. Koenigs* 1 , P. Kraiczy 1 , C. Siegel 1 , S. Früh 1 , T. Hallström 2 , C. Skerka 2 ,P.F. Zipfel 2,31 University Hospital Frankfurt, Medical Microbiology and InfectionControl, Frankfurt, Germany2 Leibniz Institute for Natural Product Research and Infection Biology,Department of Infection Biology, Jena, Germany3 Friedrich Schiller University, Jena, GermanyThe Lyme disease spirochete, Borrelia burgdorferi, is transmitted to thehuman host through the bite of an <strong>in</strong>fected tick. Upon entry <strong>in</strong>to thebloodstream the spirochetes are immediately confronted by the host’s<strong>in</strong>nate immune system. The complement system is an <strong>in</strong>tegral part of<strong>in</strong>nate immunity and <strong>in</strong> order to establish a persistent <strong>in</strong>fection <strong>in</strong> the host,Borreliae have evolved a number of sophisticated means to evadecomplement-mediated kill<strong>in</strong>g.The outer surface prote<strong>in</strong> CspA of B. burgdorferi contributes tocomplement resistance by b<strong>in</strong>d<strong>in</strong>g host complement regulators such asfactor H (CFH) and factor H-like prote<strong>in</strong>-1 (FHL-1). Here we demonstrateBIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!