20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

105chemotaxis and cytok<strong>in</strong>e <strong>in</strong>duction are crucial for <strong>in</strong>fections, the molecularbasis of the recognition by leucocytes has rema<strong>in</strong>ed un known. Here wedemonstrate that the human formyl peptide receptor 2 (FPR2) senses S.epidermidis PSMs at nanomolar concentrations. Specific block<strong>in</strong>g of FPR2or the down regulation of the PSM genes <strong>in</strong> the agr mutant led to severelydim<strong>in</strong>ished capacities of neutrophils to detect S. epidermidis PSMs.Moreover, Staphylococci developed the quorum sens<strong>in</strong>g system agr tocontrol their detection via human FPR2. Thus, the <strong>in</strong>nate immune systemuses a global mechanism to detect bacterial pathogens. Target<strong>in</strong>g FPR2may help to manage severe <strong>in</strong>fections <strong>in</strong>duced by different pathogens.Kretschmer D, Nikola N, Dürr M, Otto M and Peschel A,The virulence regulator Agr controls thestaphylococcal capacity to activate human neutrophils via the formyl peptide receptor 2, J Innate Immun.2011 Nov 8Kretschmer D, Gleske AK, Rautenberg M, Wang R, Koberle M, Bohn E, Schoneberg T, Rabiet MJ, BoulayF, Klebanoff SJ, van Kessel KA, van Strijp JA, Otto M, Peschel A: Human formyl peptide receptor 2 senseshighly pathogenic staphylococcus aureus. Cell Host Microbe 2010;7:463-473.Prat C, Bestebroer J, de Haas CJ, van Strijp JA, van Kessel KP: A new staphylococcal anti-<strong>in</strong>flammatoryprote<strong>in</strong> that antagonizes the formyl peptide receptor-like 1. J Immunol 2006;177:8017-8026.Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, Dorward DW,Klebanoff SJ, Peschel A, DeLeo FR, Otto M: Identification of novel cytolytic peptides as key virulencedeterm<strong>in</strong>ants for community-associated mrsa. Nat Med 2007;13:1510-1514.Vuong C, Durr M, Carmody AB, Peschel A, Klebanoff SJ, Otto M: Regulated expression of pathogenassociatedmolecular pattern molecules <strong>in</strong> staphylococcus epidermidis: Quorum-sens<strong>in</strong>g determ<strong>in</strong>es pro<strong>in</strong>flammatorycapacity and production of phenol-soluble modul<strong>in</strong>s. Cell Microbiol 2004;6:753-759.MPV009Salmonella Typhimurium Stimulated TranscriptionalResponse Aids Intracellular ReplicationS. Hannemann*, J.E. GalánYale University School of Medic<strong>in</strong>e, Section of Microbial Pathogenesis,New Haven, United StatesBacterial products are recognized by <strong>in</strong>nate immune receptors lead<strong>in</strong>g to<strong>in</strong>flammatory responses that can both control pathogen spread and result <strong>in</strong>pathology. Intest<strong>in</strong>al epithelial cells, which are constantly exposed tobacterial products, prevent signal<strong>in</strong>g through <strong>in</strong>nate immune receptors toavoid pathology. However, enteric pathogens such as SalmonellaTyphimurium, are able to stimulate <strong>in</strong>test<strong>in</strong>al <strong>in</strong>flammation <strong>in</strong> order topromote bacterial <strong>in</strong>fection. We found that S. Typhimurium can stimulate<strong>in</strong>nate immune responses <strong>in</strong> cultured epithelial cells by mechanisms thatdo not <strong>in</strong>volve receptors of the <strong>in</strong>nate immune system. By deliver<strong>in</strong>g a setof effector prote<strong>in</strong>s <strong>in</strong>clud<strong>in</strong>g SopB, SopE and SopE2 through its type IIIsecretion system, the bacterium directly activates Rho-family GTPases thatsubsequently trigger a profound transcriptional reprogramm<strong>in</strong>g of hostepithelial cells. These modifications support bacterial replication bymodify<strong>in</strong>g the <strong>in</strong>tracellular environment.MPV010Recruitment of PI3 k<strong>in</strong>ase to caveol<strong>in</strong> 1 determ<strong>in</strong>es the switchfrom the extracellular to the dissem<strong>in</strong>at<strong>in</strong>g stage of gonococcal<strong>in</strong>fectionM. Faulstich* 1 , J.-P. Böttcher 2 , T. Meyer 2 , M. Fraunholz 1 , T. Rudel 11 University of Würzburg Biocenter, Chair of Microbiology, Würzburg, Germany2 Max Planck Institute for Infection Biology, Dept. Molecular Biology,Berl<strong>in</strong>, GermanyNeisseria gonorrhoeae causes ma<strong>in</strong>ly local <strong>in</strong>fections but occasionally<strong>in</strong>vades the blood stream thereby <strong>in</strong>itiat<strong>in</strong>g dissem<strong>in</strong>at<strong>in</strong>g gonococcal<strong>in</strong>fections (DGI). Gonococcal type 4 pili (T4P) stabilize local <strong>in</strong>fections bymediat<strong>in</strong>g microcolony formation and <strong>in</strong>duc<strong>in</strong>g anti-<strong>in</strong>vasive signals.Outer membrane por<strong>in</strong> PorB IA, <strong>in</strong> contrast, is associated with DGI andfacilitates the efficient <strong>in</strong>vasion of gonococci <strong>in</strong>to host cells. PorB IA b<strong>in</strong>dsto the scavenger receptor expressed on endothelial cells (SREC1) underlow phosphate conditions, as found e.g. <strong>in</strong> the vascular system. Here wedemonstrate that both, T4P-mediated <strong>in</strong>hibition of <strong>in</strong>vasion and PorB IAtriggered<strong>in</strong>vasion utilize lipid rafts and signal<strong>in</strong>g pathways that depend onphosphorylation of caveol<strong>in</strong>-1 at Tyr 14 (Cav1-pY14). We identified the p85regulatory subunit of PI3 k<strong>in</strong>ase (PI3K) and phospholipase C gamma1(PLC1) as new, exclusive and essential <strong>in</strong>teraction partners for Cav1-pY14 <strong>in</strong> the course of PorB IA-<strong>in</strong>duced <strong>in</strong>vasion. Active PI3K <strong>in</strong>duces theuptake of gonococci via a novel <strong>in</strong>vasion pathway <strong>in</strong>volv<strong>in</strong>g prote<strong>in</strong> k<strong>in</strong>aseC and Rac1. Thus the SREC-I/PorB IA <strong>in</strong>teraction triggers a novel route ofbacterial entry <strong>in</strong>to epithelial cells and offers first mechanistic <strong>in</strong>sight <strong>in</strong>tothe switch from local to dissem<strong>in</strong>at<strong>in</strong>g gonococcal <strong>in</strong>fection.MPV011Systems biology of the pathogenic bacterium Yers<strong>in</strong>iapseudotuberculosisR. Bücker* 1 , J. Becker 1 , A.K. Heroven 2 , P. Dersch 2 , C. Wittmann 11 Technical University Braunschweig, Institute of BiochemicalEng<strong>in</strong>eer<strong>in</strong>g, Braunschweig, Germany2 Helmholtz Center for Infection Research, Department of MolecularInfection Biology, Braunschweig, Germanysteadily work<strong>in</strong>g antibiotics. A promis<strong>in</strong>g approach to f<strong>in</strong>d new targets andtherapeutics is the achievement of a better understand<strong>in</strong>g of the <strong>in</strong> vivo l<strong>in</strong>kbetween pathogenicity and metabolism <strong>in</strong> the underly<strong>in</strong>g pathogens. Oneof the relevant microorganisms <strong>in</strong> this field is Yers<strong>in</strong>ia pseudotuberculosis,the causative agent of self-limit<strong>in</strong>g enteritis, diarrhoea, mesentericlymphadenitis or autoimmune disorders [2]. Concern<strong>in</strong>g the <strong>in</strong>vasion ofmammalian cells, Yers<strong>in</strong>ia is known to have a complex regulatory networkwhich is controlled by nutritional and environmental conditions [3].Here, we <strong>in</strong>vestigate its metabolism on the level of molecular <strong>in</strong> vivofluxes, us<strong>in</strong>g state of art 13 C metabolic flux analysis, that is, a coretechnology from <strong>in</strong>dustrial biotechnology to perform system-wide pathwayanalysis and subsequent design-based stra<strong>in</strong> optimization [4], so far rarelyfound <strong>in</strong> the medical field. As start<strong>in</strong>g po<strong>in</strong>t for the comprehensiveanalysis, a computational model of the metabolism of Y.pseudotuberculosis was created on basis of available genomic <strong>in</strong>formationand implemented <strong>in</strong>to the flux software platform OpenFlux [5]. Comb<strong>in</strong>edwith 13 C isotope experiments, the model allows to quantify all majorpathways from central carbon metabolism <strong>in</strong>clud<strong>in</strong>g glycolysis, pentosephosphate pathway, TCA cycle, anaplerotic pathways as well as anabolismof extracellular product formation.Us<strong>in</strong>g this novel approach, several mutants of Y. pseudotuberculosislack<strong>in</strong>g specific virulence factors are compared to the wild type to studythe <strong>in</strong>fluence of the correspond<strong>in</strong>g genes on metabolism. Simultaneouslyperformed transcriptome profil<strong>in</strong>g provides the l<strong>in</strong>k to the layers ofregulation, superimpos<strong>in</strong>g the flux network. In further studies the <strong>in</strong>fluenceof different antibiotic classes <strong>in</strong> sub-<strong>in</strong>hibitory concentrations will beunraveled as well as the effects of temperature, a key parameter dur<strong>in</strong>g the<strong>in</strong>fection cycle of Y. pseudotuberculosis.[1]Piddock LJ.: Lancet Infect Dis. 2011 Nov 17.[2] Heroven, A.K. and Dersch, P. (2006): Molecular Microbiology 62(5), 1469-1483.[3] Heroven, A.K. et al (2008): Molecular Microbiology 68(5), 1179-1195.[4] Wittmann, C. (2010): Advances <strong>in</strong> Biochemical Eng<strong>in</strong>eer<strong>in</strong>g/Biotechnology 120, 21-49.[5] Quek, L.E. et al (2009): Microbial Cell Factories 8:25.AcknowledgementsThe authors acknowledge f<strong>in</strong>ancial support by German Research Foundation with<strong>in</strong> the PriorityProgram „Wirtsadaptierter Metabolismus von bakteriellen Infektionserregern (SPP 1316)”MPV012Shigella IpaD has a dual role <strong>in</strong> type III secretion systemactivationA.D. Roehrich* 1 , E. Guillossou 1 , R.B. Sessions 2 , A.J. Blocker 1,2 , I. Mart<strong>in</strong>ez-Argudo 1,31 University of Bristol, School of Cellular and Molecular Medic<strong>in</strong>e, Bristol, Spa<strong>in</strong>2 University of Bristol, School of Biochemistry, Bristol, United K<strong>in</strong>gdom3 Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales yBioquímica, Toledo, Spa<strong>in</strong>Type III secretion systems (T3SS) are prote<strong>in</strong> <strong>in</strong>jection devices used byGram negative bacteria to manipulate eukaryotic cells. In Shigella, theT3SS is assembled when the environmental conditions are appropriate for<strong>in</strong>vasion. However, secretion is only activated after physical contact of theneedle tip with the host cell generates an activation signal. The signal istransmitted to the cytoplasm where it triggers secretion. First, translocatorsare secreted which form a pore <strong>in</strong> the host cell membrane. Second, effectorprote<strong>in</strong>s are translocated <strong>in</strong>to the host cell.The activation process is controlled by components both at the needle tipand <strong>in</strong> the cytoplasm: At the needle tip, IpaD provides a scaffold for thetranslocators IpaB and IpaC. In its absence no needle tip is formed, theT3SS secretes constitutively and is unable to sense host cell contact. In thecytoplasm, MxiC acts as a gate-keeper of the T3SS. In its absence, thesecretion of pore-form<strong>in</strong>g prote<strong>in</strong>s is decreased and effector prote<strong>in</strong>s are leaked.Questions: What is the role of the major needle tip prote<strong>in</strong> IpaD <strong>in</strong>secretion activation at the needle tip and <strong>in</strong> the cytoplasm? What is the roleof the cytoplasmic gate-keeper prote<strong>in</strong> MxiC <strong>in</strong> translocator secretion?Methods: We have performed random and site-directed mutagenesis ofipaD and mxiC, respectively, and analysed the type III secretion profiles,needle tip composition and host cell <strong>in</strong>teractions of the mutants. We havealso used prote<strong>in</strong> copurification to analyse prote<strong>in</strong> complexes.Results: Random mutagenesis of ipaD identified two classes of mutants.Class I mutants are affected <strong>in</strong> signal transduction from the needle tipwhile Class II are affected <strong>in</strong> regulation of ordered secretion <strong>in</strong>ductionfrom the cytoplasm. Site-directed mutagenesis identified a negatively chargedpatch on the surface of MxiC that might be <strong>in</strong>volved <strong>in</strong> <strong>in</strong>teraction with IpaD.Conclusions: Our data confirms and extends our understand<strong>in</strong>g of the<strong>in</strong>volvement of the major needle tip prote<strong>in</strong> <strong>in</strong> secretion activation andadds a completely novel aspect to the present model for prevention ofpremature secretion, <strong>in</strong> the absence of an activation signal, from with<strong>in</strong> thebacterial cytoplasm.The ris<strong>in</strong>g problem of antimicrobial resistance comb<strong>in</strong>ed with the shortageof antibacterial drug discovery [1] will result <strong>in</strong> a decreas<strong>in</strong>g number ofBIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!