20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

52ISV01Die verborgene Welt der Bakterien und ihre Bedeutung fürdas Leben auf der ErdeK.-H. SchleiferTechnische Universität München, Mikrobiologie, München, GermanyBei Bakterien denken die meisten Menschen an Krankheitserreger. Dochdie überwiegende Mehrheit dieser Organismen ist harmlos oder sogarnützlich. Sie spielen e<strong>in</strong>e wichtige Rolle bei der Herstellung fermentierterLebensmittel oder <strong>in</strong> der weißen Biotechnologie. Die zellkernlosenProkaryoten (Bakterien + Archaeen) s<strong>in</strong>d jedoch noch aus anderenGründen sehr wichtig. Sie kommen <strong>in</strong> ungeheuer großen Zahlen vor undmachen ca. 50% der globalen Biomasse aus. Leider ist bisher nur e<strong>in</strong>Bruchteil von ihnen bekannt, da sie als Re<strong>in</strong>kultur nicht zugänglich s<strong>in</strong>d.Durch genotypische Methoden, <strong>in</strong>sbesondere durch vergleichendeSequenzanalyse der 16S-rRNS Gene ist es allerd<strong>in</strong>gs möglich, dieOrganismen auch ohne vorherige Kultivierung zu identifizieren. Mit Hilfemaßgeschneiderter, fluoreszenzmarkierter Oligonukleotidsonden, die ankomplementäre Sequenzen der 16S-rRNS b<strong>in</strong>den, lassen sich dieOrganismen auch <strong>in</strong> situ nachweisen und identifizieren. Dies soll anhandverschiedener Beispiele belegt werden.Die Prokaryoten s<strong>in</strong>d die Wegbereiter der Biosphäre. Für m<strong>in</strong>destens 2Milliarden Jahre waren sie die e<strong>in</strong>zigen Lebewesen auf unserem Planeten.Sie waren an der Entstehung der höheren Lebewesen (Eukaryoten)beteiligt, und die Cyanobakterien sorgten für den nötigen Sauerstoff aufder Erde. Der Nährstoffkreislauf, <strong>in</strong>sbesondere Stickstoff-und Schwefelkreislauf,wäre ohne die Prokaryoten unvollständig. Überdies zeichnen siesich durch e<strong>in</strong>zigartige Mechanismen der Energiegew<strong>in</strong>nung aus, und siesetzen auch die Grenzen des Lebens fest. Sie wachsen überall, wo nochflüssiges Wassers vorkommt.Die Bakterien spielen auch e<strong>in</strong>e besondere Rolle <strong>in</strong> der Evolution undÖkologie der Eukaryoten. Sie können als Kommensalen, Endo- oderEktosymbionten vorkommen. Dies soll an verschiedenen Beispielengezeigt werden.Bakterien und Archaeen s<strong>in</strong>d durch ihre vielfältigen Aktivitäten wichtigfür Umwelt und Klima. Sie s<strong>in</strong>d entscheidend an Aufbau und Erhalt derBiosphäre beteiligt. Ohne sie wäre die M<strong>in</strong>eralisierung organischer Stoffeunvollständig und ohne sie gäbe es auch nicht die typischen Eukaryoten.Der Vorläufer der heutigen Mitochondrien, den Energiekraftwerken dereukaryotischen Zellen, gehört zu den Alpha-Proteobakterien und dieChloroplasten, <strong>in</strong> denen die Photosynthese stattf<strong>in</strong>det, stammen vonCyanobakterien ab. All dies spricht dafür, dass es ohne Bakterien ke<strong>in</strong>Leben auf unserem Planeten gäbe.ISV02From microorganisms to the atmosphere: flooded soils and themethane cycleR. ConradMax-Planck-Institut für terrestrische Mikrobiologie, Biogeochemie,Marburg, GermanyFlooded soils such as rice fields and wetlands are the most importantsource for the greenhouse gas methane. Rice fields, <strong>in</strong> particular, serve asmodel for study<strong>in</strong>g the role of the structure of anaerobic microbialcommunities for ecosystem function<strong>in</strong>g and the partition<strong>in</strong>g of carbon fluxalong different paths of degradation of organic matter to methane. Floodedsoils are relatively rapidly depleted of oxygen and other oxidants such asferric iron and sulfate. Then, organic matter degradation results <strong>in</strong> theproduction methane. Methane is eventually produced from different typesof organic matter, ma<strong>in</strong>ly from plant litter, root exudates, and soil organicmatter. Methane production is achieved by a community consist<strong>in</strong>g ofhydrolytic, ferment<strong>in</strong>g and methanogenic microorganisms. Acetate andhydrogen (plus CO 2) are the two most important fermentation productsthat are used as methanogenic substrates to different extent. The transportof CH 4 to the atmosphere is ma<strong>in</strong>ly partitioned between transport throughthe aerenchyma system of plants, gas ebullition and diffusion. Transportthrough oxygenated zones such as the surface soil or the rhizosphereresults <strong>in</strong> oxidation of a substantial percentage of methane bymethanotrophic bacteria thus attenuat<strong>in</strong>g the methane flux <strong>in</strong>to theatmosphere. Tracer experiments (e.g. us<strong>in</strong>g stable carbon isotopes) areuseful for quantify<strong>in</strong>g the partition<strong>in</strong>g of carbon flux along different pathsand for elucidat<strong>in</strong>g the active microbial groups <strong>in</strong>volved <strong>in</strong> carbontransformation.ISV03Physiology, mechanisms and habitats of microbial Fe(II) oxidationA. KapplerUniversity of Tüb<strong>in</strong>gen, Geomicrobiology, Center for AppliedGeosciences, Tüb<strong>in</strong>gen, GermanyThe two most important redox states of iron <strong>in</strong> the environment are Fe(II)[ferrous iron] and Fe(III) [ferric iron]. Dissolved Fe(II), relatively solubleFe(II) m<strong>in</strong>erals and poorly soluble Fe(III) m<strong>in</strong>erals are abundant <strong>in</strong> pHneutralsoils and sediments. Redox transformation of iron lead<strong>in</strong>g either todissolution, transformation or precipitation of iron m<strong>in</strong>erals is used bymany microorganisms to produce energy and to grow. Oxidation ofdissolved ferrous iron [Fe(II)] at neutral pH can be catalyzed byacidophilic aerobic and neutrophilic microaerophilic, nitrate-reduc<strong>in</strong>g andeven phototrophic microorganisms. This contribution will present thecurrent knowledge and new results regard<strong>in</strong>g mechanisms, physiology,ecology and environmental implications of microbial Fe(II) oxidation.Special focus will be on microaerophilic Fe(II)-oxidiz<strong>in</strong>g bacteria thatthrive <strong>in</strong> gradients of ferrous iron and oxygen (e.g. at the surface of riceroots <strong>in</strong> paddy soil), phototrophic Fe(II)-oxidiz<strong>in</strong>g autotrophs liv<strong>in</strong>g <strong>in</strong>surface near environments such as littoral sediments, and f<strong>in</strong>ally on nitratereduc<strong>in</strong>gbacteria oxidiz<strong>in</strong>g Fe(II) <strong>in</strong> soils and sediments.ISV04Assembly and function of archaeal surface structuresS.-V. AlbersMax-Planck-Institut für terrestrische Mikrobiologie, Marburg, GermanyArchaea, the third doma<strong>in</strong> of life, possess a variety of surface structuressuch as pili and flagella. These structures have <strong>in</strong> common that they arecomposed of subunits that are found <strong>in</strong> bacterial type IV pili which amongothers are <strong>in</strong>volved <strong>in</strong> bacterial pathogenesis. The archaeal pili and flagellasystems appear to be much simpler than their bacterial counterparts and aretherefore well suited model systems to understand the mechanistic of theassembly process.The thermoacidophilic archaeon Sulfolobus acidocaldariusexhibits three different surface appendages, (i) flagella, (ii) th<strong>in</strong> pili, and (iii) UVlight <strong>in</strong>duced pili. In Sulfolobus the flagellum is ma<strong>in</strong>ly <strong>in</strong>volved <strong>in</strong> adhesion andsurface motility, which seems to be <strong>in</strong>hibited by the th<strong>in</strong> pili. The UV <strong>in</strong>ducedpili <strong>in</strong>itiate cell aggregation after DNA damage and subsequent DNA repair byconjugation. Next to the physiological function of these surface structures ourunderstand<strong>in</strong>g of their assembly will be discussed.ISV05Current views on the role as well as the fate of host cellsdur<strong>in</strong>g <strong>in</strong>fectionThomas F. Meyer and coworkersDepartment of Molecular Biology, Max Planck Institute for Infection Biology,Berl<strong>in</strong>, GermanyInfectious disease research has led us to the realization that the <strong>in</strong>itiationand progression of <strong>in</strong>fection are critically dependent on both pathogen andhost determ<strong>in</strong>ants. Microbial virulence factors have been studied <strong>in</strong> greatdetail over the past decades; however, the role of host determ<strong>in</strong>ants as thecounterparts of pathogen virulence factors and signal transductionelements has been less <strong>in</strong>tensely pursued. With the discovery of RNAi, anextremely useful tool has become available that facilitates the assessmentof host-cell determ<strong>in</strong>ants and their role <strong>in</strong> <strong>in</strong>fection at the genome-widelevel. Here, I present two examples of global host-cell function analysis,address<strong>in</strong>g <strong>in</strong>fluenza virus and Chlamydia <strong>in</strong>fections (1,2), and discuss theimplications for the development of a novel class of therapeutic drugs aswell as for our future understand<strong>in</strong>g of host susceptibility to <strong>in</strong>fection andmorbidity/mortality determ<strong>in</strong>ants.Host cells are not merely vehicles for pathogen replication; it appears hostcells are also subject to genetic and epigenetic modifications dur<strong>in</strong>g<strong>in</strong>fection, and are therefore capable of acquir<strong>in</strong>g heritable features that mayunderlie pathological sequelae, <strong>in</strong>clud<strong>in</strong>g cancer. The gastric pathogenHelicobacter pylori is the paradigm of a cancer-<strong>in</strong>duc<strong>in</strong>g bacterium (3).We, and others, can show that H. pylori and other bacterial pathogens arecapable of caus<strong>in</strong>g genetic and epigenetic lesions <strong>in</strong> <strong>in</strong>fected cells (4).However, DNA damage alone does not seem to be sufficient <strong>in</strong> itself forcarc<strong>in</strong>ogenesis. Other features such as persistence of <strong>in</strong>fection andmitogenic stimuli are likely cofactors (5).1. Karlas, A., N.Machuy, Y.Sh<strong>in</strong>, K.-P.Pleissner, A.Artar<strong>in</strong>i, D.Heuer, D.Becker, H.Khalil, L.A.Ogilvie,S.Hess, A.P.Mäurer, E.Müller, T.Wolff, T.Rudel, and T.F.Meyer. 2010. Genome-wide RNAi screenidentifies human host factors crucial for <strong>in</strong>fluenza virus replication. Nature 463:818-822.2. Gurumurthy, R.K., A.P.Mäurer, N.Machuy, S.Hess, K.P.Pleissner, J.Schuchhardt, T.Rudel, andT.F.Meyer. 2010. A loss-of-function screen reveals Ras- and Raf-<strong>in</strong>dependent MEK-ERK signal<strong>in</strong>g dur<strong>in</strong>gChlamydia trachomatis <strong>in</strong>fection. Science Signal<strong>in</strong>g 3:ra21.3. Bauer, B., and T.F.Meyer. 2011. The human gastric pathogen Helicobacter pylori and its association withgastric cancer and ulcer disease. Ulcers. doi:10.1155/2011/3401574. Fassi Fehri, L., C.Rechner, S.Janssen, T.N.Mak, C.Holland, S.Bartfeld, H.Bruggemann, and T.F.Meyer.2009. Helicobacter pylori-<strong>in</strong>duced modification of the histone H3 phosphorylation status <strong>in</strong> gastric epithelialcells reflects its impact on cell cycle regulation. Epigenetics. 4:577-586.5. Kessler, M., J.Zielecki, O.Thieck, H.J.Mollenkopf, C.Fotopoulou, and T.F.Meyer. 2011. ChlamydiaTrachomatis Disturbs Epithelial Tissue Homeostasis <strong>in</strong> Fallopian Tubes via Paracr<strong>in</strong>e Wnt Signal<strong>in</strong>g. Am. JPathol..180:186-198.ISV06No abstract submitted!BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!