20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

178PSP010Crystal structure of the electron-transferr<strong>in</strong>g flavoprote<strong>in</strong> (Etf)from Acidam<strong>in</strong>ococcus fermentans <strong>in</strong>volved <strong>in</strong> electronbifurcationN. Pal Chowdhury* 1,2 , A. Mohammed Hassan 1,2 , U. Demmer 3 , U. Ermler 3 ,W. Buckel 1,21 Philipps-Universität, Fachbereich Biologie, Marburg, Germany2 Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany3 Max-Planck-Institut für Biophysik, Frankfurt, GermanyAerobic organisms use electron-transferr<strong>in</strong>g flavoprote<strong>in</strong> (Etf) as electronacceptor for the oxidation of acyl-CoA to enoyl-CoA. The reduced form ofEtf is then reoxidized by qu<strong>in</strong>one at the <strong>in</strong>ner mitochondrial membrane ofeukaryotes or at the cytoplasmic membrane of bacteria. The structure ofthe human heterodimeric Etf () revealed three doma<strong>in</strong>s, two of which areformed by the -subunit (I and II) and one by the -subunit (III). -FADlocated at the surface of doma<strong>in</strong> II <strong>in</strong>teracts with acyl-CoA dehydrogenase.The center of doma<strong>in</strong> III conta<strong>in</strong>s AMP with an enigmatic function. The<strong>in</strong>terface between doma<strong>in</strong>s II and III appears to be flexible due to absenceof secondary structures [1].Anaerobic bacteria synthesize butyrate via the NADH-dependent reductionof crotonyl-CoA to butyryl-CoA mediated by butyryl-CoA dehydrogenaseand Etf. This exergonic reaction is coupled to the endergonic reduction offerredox<strong>in</strong> by NADH, a process called electron bifurcation [2]. Whereas <strong>in</strong>Clostridium klyuveri [3] and Clostridium tetanomorphum butyryl-CoAdehydrogenase and Etf form a tight complex, <strong>in</strong> A. fermentans bothcomponents separate dur<strong>in</strong>g purification. Recomb<strong>in</strong>ant Etf from A.fermentans produced <strong>in</strong> Escherichia coli was crystallized and its structurehas been solved. The structure is closely related to that of the human Etf,but AMP is replaced by a second -FAD. We propose that NADH reduces-FAD to -FADH - . Then -FAD switches towards -FADH - and takesone electron to yield -FADH·and -FAD·- . Whereas -FAD·- is stabilizedby the flavodox<strong>in</strong>-like doma<strong>in</strong> II and transfers the electron further to thedehydrogenase, the rema<strong>in</strong><strong>in</strong>g highly reactive -FADH·immediatelyreduces ferredox<strong>in</strong>. Repetition of this process results <strong>in</strong> the reduction of 2ferredox<strong>in</strong>s and one crotonyl-CoA by 2 NADH. The reduced ferrdox<strong>in</strong>smay give rise to H 2 or to H + /Na + via a membrane bound NADferredox<strong>in</strong>oxidoreductase also called Rnf.1. Roberts DL, Frerman FE & Kim JJ (1996) Proc Natl Acad Sci U S A 93, 14355-14360.2. Herrmann G, Jayamani E, Mai G & Buckel W (2008) J Bacteriol 190, 784-7913. Li F, H<strong>in</strong>derberger J, Seedorf H, Zhang J, Buckel W & Thauer RK (2008) J Bacteriol 190, 843-850PSP011Nitrous oxide turnover <strong>in</strong> the nitrate-ammonify<strong>in</strong>gEpsilonproteobacterium Wol<strong>in</strong>ella succ<strong>in</strong>ogenesM. Luckmann*, M. Kern, J. SimonTU-Darmstadt, Department of Biology, Darmstadt, GermanyGlobal warm<strong>in</strong>g is mov<strong>in</strong>g more and more to the public consciousness.Besides the commonly mentioned carbon dioxide, nitrous oxide (N 2O) isone of the most important greenhouse gases and accounts for about 10% ofthe anthropogenic greenhouse effect.In the environment N 2O is produced, for example, by nitrify<strong>in</strong>g anddenitrify<strong>in</strong>g microbial species. On the other hand, some respiratory nitrateammonify<strong>in</strong>gEpsilonproteobacteria are able to reduce nitrous oxide tod<strong>in</strong>itrogen via an unconventional cytochrome c nitrous oxide reductase(cNosZ). The energy metabolism of one of these bacteria, Wol<strong>in</strong>ellasucc<strong>in</strong>ogenes, has been characterized thoroughly <strong>in</strong> the past. The cells areable to use either formate or hydrogen gas as electron donors together withtypical term<strong>in</strong>al electron acceptors like, for example, fumarate, nitrate,polysulfide or nitrous oxide. Despite utiliz<strong>in</strong>g nitrous oxide, it is notknown if these cells are produc<strong>in</strong>g N 2O <strong>in</strong> substantial amounts dur<strong>in</strong>genergy substrate turnover or if they are act<strong>in</strong>g only as N 2O s<strong>in</strong>ks.The cytochromecnitrous oxide reductase of W. succ<strong>in</strong>ogenesis encoded bythe first gene of the nos gene cluster together with a unique electrontransport system that is predicted to connect the menaqu<strong>in</strong>one/menaqu<strong>in</strong>olpool with cNosZ. The <strong>in</strong>volved electron transfer cha<strong>in</strong> may comprise amenaqu<strong>in</strong>ol dehydrogenase of the unusual NapGH-type and the twomonohaem cytochromes c NosC1 and NosC2. Correspond<strong>in</strong>g <strong>in</strong>-framegene deletion stra<strong>in</strong>s were constructed and characterized. Based on theresults, a model of nitrous oxide turnover <strong>in</strong> W. succ<strong>in</strong>ogenes will bepresented.PSP012Anaerobic n-hexane degradation <strong>in</strong> nitrate reduc<strong>in</strong>g stra<strong>in</strong> HxN1A. Parthasarathy* 1,2 , M. Drozdowska 3 , J. Kahnt 2 , R. Rabus 4,5 , F. Widdel 5 ,B.T. Gold<strong>in</strong>g 3 , H. Wilkes 6 , W. Buckel 1,21 Philipps-Universität, Fachbereich Biologie, Marburg, Germany2 Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany3 University of Newcastle upon Tyne, Chemistry, Newcastle, UnitedK<strong>in</strong>gdom4 Universität Oldenburg, Institut für Chemie und Biologie des Meeres,Oldenburg, Germany5 Max-Planck-Institut für Mar<strong>in</strong>e Mikrobiologie, Bremen, Germany6 Helmholtz-Zentrum Potsdam, Organische Geochemie, Potsdam, GermanyThe denitrify<strong>in</strong>g Betaproteobacterium HxN1 grows on n-hexane [1]form<strong>in</strong>g alkyl substituted succ<strong>in</strong>ates. The proposed pathway starts with theaddition of n-hexane to fumarate with the exclusive abstraction of the pro-S hydrogen of n-hexane via a glycyl-radical enzyme catalysed reaction [1],yield<strong>in</strong>g a mixture of (2R,1'R) and (2S,1'R)-1'-methylpentylsucc<strong>in</strong>ates mostlikely as CoA-thioesters [2]. These <strong>in</strong>termediates are proposed to bedegraded via <strong>in</strong>tramolecular rearrangement to (4R)-(2-methylhexyl)malonyl-CoA and carboxyl group loss yield<strong>in</strong>g (4R)-4-methyloctanoyl-CoA. Further degradation may occur via dehydrogenationand -oxidation [3]. If (4R)-(2-methylhexyl)malonyl-CoA, synthesised bya novel method, and propionyl-CoA were <strong>in</strong>cubated with cell-free extractof stra<strong>in</strong> HxN1, MALDI-TOF mass spectrometry revealed formation ofmethylmalonyl-CoA and 2-methylhex-2-enoyl-CoA (-oxidation product).Therefore, transcarboxylation (CO 2 exchange between substrates) occurs atthe CoA thioester level as predicted, l<strong>in</strong>k<strong>in</strong>g the degradation of 1-methylpentylsucc<strong>in</strong>ate to the generation of succ<strong>in</strong>ate via methylmalonyl-CoA.1) Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Widdel F (2001) J Bacteriol 183,1707-1715.2) Jarl<strong>in</strong>g R, Sadeghi M, Drozdowska M, Lahme S, Buckel W, Rabus R, Widdel F, Gold<strong>in</strong>g BT, Wilkes H(2011), Angew. Chem. <strong>in</strong> press.3) Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F (2002) Arch. Microbiol 177, 235.PSP013Streptomyces coelicolor A3(2) Spores are Prepared for an AbruptShift from Aerobic Respiration to Anaerobic Respiration withNitrateD. Falke*, M. Fischer, G. SawersMart<strong>in</strong>-Luther-University Halle, Biology/Microbiology, AG Sawers, Halle(Saale), GermanyThe filamentous act<strong>in</strong>obacterium Streptomyces coelicolor has a complexlife cycle <strong>in</strong>clud<strong>in</strong>g growth as vegetative hyphae, generation ofhydrophobic aerial hyphae and the production of exospores. Despite be<strong>in</strong>gan obligate aerobe S. coelicolor is able to reduce nitrate to nitrite, probablyto help ma<strong>in</strong>ta<strong>in</strong> a membrane potential dur<strong>in</strong>g oxygen limitation. Thegenome of S. coelicolor has 3 copies of the narGHJI operon, eachencod<strong>in</strong>g a nitrate reductase (Nar) [1]. Nars are multi-subunit, membraneassociatedenzymes that couple nitrate reduction to energy conservation.Each Nar enzyme is synthesized <strong>in</strong> S. coelicolor and is active <strong>in</strong> differentphases of growth and <strong>in</strong> different tissues: Nar1 is active <strong>in</strong> spores; Nar2 isactive <strong>in</strong> germ<strong>in</strong>at<strong>in</strong>g spores and mycelium; while Nar3 is <strong>in</strong>duced <strong>in</strong> thestationary phase correlat<strong>in</strong>g with the onset of secondary metabolism [2].The Nar enzymes are therefore not redundant but rather appear to havedist<strong>in</strong>ct functions <strong>in</strong> the developmental program of the bacterium.In this study we focused on nitrate respiration <strong>in</strong> rest<strong>in</strong>g spores. Freshlyharvested spores of S. coelicolor wild type M145 could reduce nitrate at asignificant rate without addition of an exogenous electron donor. However,an exogenous electron donor was required to measure the activity <strong>in</strong> crudeextracts of spores. Moreover, activity could be visualized by direct sta<strong>in</strong><strong>in</strong>gafter native PAGE. Analysis of def<strong>in</strong>ed knockout mutants demonstratedthat Nar activity <strong>in</strong> spores was due exclusively to Nar1. By us<strong>in</strong>g adiscont<strong>in</strong>uous assay to measure nitrite production by spores we coulddemonstrate that Nar1 was only capable of nitrate reduction <strong>in</strong> the absenceof oxygen. Addition of oxygen immediately prevented nitrate reduction.S<strong>in</strong>ce Nar1 activity <strong>in</strong> whole spores showed a reversible dependence onanaerobiosis, this f<strong>in</strong>d<strong>in</strong>g suggests that spores regulate either nitratetransport or Nar1 activity <strong>in</strong> response to oxygen. Notably, studies us<strong>in</strong>gprote<strong>in</strong> synthesis <strong>in</strong>hibitors revealed that Nar1 is always present and active<strong>in</strong> rest<strong>in</strong>g spores.[1] van Keulen et al. (2005) Nitrate respiration <strong>in</strong> the act<strong>in</strong>omycete Streptomyces coelicolor.Biochem Soc Trans. 33(Pt 1):210-2[2] Fischer et al. (2010) The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three activerespiratory nitrate reductases. Microbiology. 156(Pt 10):3166-79PSP014New <strong>in</strong>sights <strong>in</strong>to acetate and glycerol metabolism ofSchizosaccharomyces pombeT. Kle<strong>in</strong>*, K. Schneider, E. He<strong>in</strong>zleSaarland University, Biochemical Eng<strong>in</strong>eer<strong>in</strong>g, Saarbruecken, GermanyThe fission yeast Schizosaccharomyces pombe has been a model organismof molecular biology for decades. However, little is known about itsBIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!