20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

238YEV2-FGMechanistic <strong>in</strong>sight <strong>in</strong>to receptor endocytosis and endosomalA/B tox<strong>in</strong> traffick<strong>in</strong>g <strong>in</strong> yeastE. Gießelmann, J. Dausend, B. Becker, M.J. Schmitt*Saarland University, Department of Biosciences (FR 8.3), Molecular &Cell Biology, Saarbrücken, GermanyYeast stra<strong>in</strong>s <strong>in</strong>fected with the M28 dsRNA killer virus secrete aheterodimeric killer tox<strong>in</strong> (K28) belong<strong>in</strong>g to the family of microbial A/Btox<strong>in</strong>s. After receptor-mediated cell entry, the tox<strong>in</strong> reaches the cytosol ofa target cell by travell<strong>in</strong>g the secretion pathway <strong>in</strong> reverse [1]. The alphatox<strong>in</strong> <strong>in</strong>hibits DNA synthesis <strong>in</strong> the nucleus and causes apoptotic cell death[1]. Key components <strong>in</strong> the <strong>in</strong>toxification process are the -C-term<strong>in</strong>alHDEL motiv of the tox<strong>in</strong> and its <strong>in</strong>teraction with the HDEL receptorErd2p of the target cell. Most recent CSLM data <strong>in</strong> conjunction withErd2p-based reporter assays <strong>in</strong>dicated that Erd2p colocalizes to the plasmamembrane where it functions as membrane receptor for tox<strong>in</strong> endocytosis.Sequence analysis of Erd2p revealed N- and C-term<strong>in</strong>al endocytic motifsrelevant for receptor <strong>in</strong>ternalization. Physical Erd2p/Rsp5p <strong>in</strong>teractionidentified via BiFC analysis <strong>in</strong>dicated that receptor (mono)ubiquitiationtriggers the <strong>in</strong>ternalization of receptor-bound tox<strong>in</strong>. Additional studiesverified the importance of early mediators of endocytosis, <strong>in</strong>clud<strong>in</strong>g thecoat build<strong>in</strong>g complex and the act<strong>in</strong> mach<strong>in</strong>ery for tox<strong>in</strong> uptake as well asAP2-complex components, which so far have only been described to be<strong>in</strong>volved <strong>in</strong> the endocytosis of mammalian cells [2]. To further dissecttox<strong>in</strong> traffick<strong>in</strong>g, biologically active K28/mCherry fusions were expressed<strong>in</strong> Pichia pastoris and used to track the tox<strong>in</strong>'s transit through theendocytic pathway, <strong>in</strong>clud<strong>in</strong>g TIRF microscopy for quantitative analysesof Erd2-GFP mobility <strong>in</strong> wild-type yeast and selected endocytic mutants.Our studies were extended by <strong>in</strong>vestigat<strong>in</strong>g uptake and endocytic transportof the plant A/B tox<strong>in</strong> ric<strong>in</strong>. This heteromeric glycoprote<strong>in</strong> belongs to thefamily of ribosome <strong>in</strong>activat<strong>in</strong>g prote<strong>in</strong>s (RIPs) whose <strong>in</strong> vivo toxicityresults from the depur<strong>in</strong>ation of 28S rRNA catalyzed by the A-cha<strong>in</strong> ofric<strong>in</strong>, RTA. S<strong>in</strong>ce extention of RTA by a mammalian-specific ER retentionsignal (KDEL) significantly <strong>in</strong>creases RTA toxicity aga<strong>in</strong>st mammaliancells, we analyzed the phenotypic effect of RTA carry<strong>in</strong>g the yeast-specificER retention motif HDEL. Interest<strong>in</strong>gly RTA HDEL showed a similarcytotoxic effect on yeast as a correspond<strong>in</strong>g RTA KDEL variant on HeLacells. Furthermore, we established a powerful yeast bioassay for RTA <strong>in</strong>vivo uptake and traffick<strong>in</strong>g. The assay verified the RTA resistantphenotype seen <strong>in</strong> yeast mutants defective <strong>in</strong> early steps ofendocytosis(end3) and/or <strong>in</strong> RTA depur<strong>in</strong>ation activity(rpl12B) [3].Thus K28 and RTA represent powerful tools and substrates for generalstudies of endocytosis and endosomal traffick<strong>in</strong>g <strong>in</strong> eukaryotic cells.K<strong>in</strong>dly supported by grants from the Deutsche Forschungsgeme<strong>in</strong>schaft.1. M.J. Schmitt and F. Bre<strong>in</strong>ig (2006). Nat. Rev. Microbiol.4:, 212.2. S.Y. Carroll et al. (2009). Dev. Cell17: 552.3. B. Becker and M.J. Schmitt (2011). Tox<strong>in</strong>s7: 834.YEV3-FGThe conjunction of mRNA export and translationA. Hackmann, T. Gross, C. Baierle<strong>in</strong>, H. Krebber*University of Gött<strong>in</strong>gen, Institute for Microbiology and Genetics,Department Molecular Genetics, Gött<strong>in</strong>gen, GermanyIn recent years it has been shown that some mRNA export factors are also<strong>in</strong>volved <strong>in</strong> translation. Here we report on the identification of a noveltransport function of the yeast mRNA export factor Npl3 <strong>in</strong> the export oflarge ribosomal subunits from the nucleus to the cytoplasm. Interest<strong>in</strong>gly,while mRNAs are exported via the RNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> Npl3 and its<strong>in</strong>teract<strong>in</strong>g export receptor Mex67, the export of large ribosomal subunitsalso requires Mex67, however, <strong>in</strong> this case Mex67 directly b<strong>in</strong>ds to the 5SrRNA and does not require the Npl3-adapter. We discovered a novelfunction of Npl3 <strong>in</strong> mediat<strong>in</strong>g pre-60S ribosomal subunit export<strong>in</strong>dependent of Mex67. Npl3 <strong>in</strong>teracts with the 25S rRNA, ribosomal andribosome associated prote<strong>in</strong>s and with the NPC. Mutations <strong>in</strong> NPL3 lead toexport defects of the large subunit and genetic <strong>in</strong>teractions with other pre-60S export factors.YEV4-FGLocalization of mRNAs and endoplasmic reticulum <strong>in</strong> budd<strong>in</strong>gyeastJ. Fundakowski 1 , M. Schmid 2 , C. Genz 1 , S. Lange 2 , R.-P. Jansen* 11 Eberhard-Karls-Universität, Interfaculty Institute for Biochemistry, Tüb<strong>in</strong>gen,Germany2 Ludwig-Maximilians-Universität München, GeneCenter, Munich, GermanyLocalization of mRNAs contributes to generation and ma<strong>in</strong>tenance ofcellular asymmetry, embryonic development and neuronal function [1]. Itis a widely distributed process <strong>in</strong> s<strong>in</strong>gle-celled and multicellular eukaryotesbut has also been described for prokaryotes. In the budd<strong>in</strong>g yeastSaccharomyces cerevisiae, a m<strong>in</strong>imal prote<strong>in</strong> complex comprised of themyos<strong>in</strong> motor Myo4p, the RNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> She2p, and the adapterand RNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> She3p localizes >30 mRNAs to the bud tip [2].This set of mRNAs <strong>in</strong>cludes 13 mRNAs encod<strong>in</strong>g membrane or secretedprote<strong>in</strong>s. It has been observed that ribonucleoprote<strong>in</strong> (RNP) particlesconta<strong>in</strong><strong>in</strong>g one of these mRNAs can co-localize with tubular ER structures.Such ER tubules form the <strong>in</strong>itial elements for segregation of cortical ER(cER) [3]. Co-localization has therefore been suggested to illustrate acoord<strong>in</strong>ation of mRNA localization and cER distribution [4]. By<strong>in</strong>vestigat<strong>in</strong>g mRNA localization <strong>in</strong> yeast mutants defective <strong>in</strong> cERsegregation, we demonstrate that proper cER segregation is required forlocalization of a subset of mRNAs. These mRNAs are expressed at thetime of tubular ER movement <strong>in</strong>to the bud. Localization of ASH1 mRNAthat is expressed after tubular movement has ceased is not affected <strong>in</strong> anyof these mutants. Co-localization of RNPs and tubular ER depends on theRNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> She2p and requires its tetramerization. She2p canb<strong>in</strong>d to artificial, prote<strong>in</strong>-free liposomes <strong>in</strong> a membrane curvaturedependentmanner with a preference for small liposomes with a diameterresembl<strong>in</strong>g yeast ER tubules. In support of this f<strong>in</strong>d<strong>in</strong>g, loss of prote<strong>in</strong>srequired for tubule formation result <strong>in</strong> defective mRNA localization <strong>in</strong>vivo. Our results demonstrate that She2p is not only an RNA- but alsolipid-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> that recognizes membrane curvature, which makes itan ideal coord<strong>in</strong>ator of ER tubule and mRNA co-transport1. K. Mart<strong>in</strong> and A. Ephrussi, Cell136(2009), p. 719.2. G. Gonsalez, C.R. Urb<strong>in</strong>ati, and R.M. Long, Biol. Cell97 (2005), p. 75.3. Y. Du, S. Ferro-Novick, and P. Novick, J. Cell Sci.117(2004), p. 2871.4. M. Schmid, A. Jaedicke, T.-G. Du, and R.-P. Jansen, Curr. Biol16(2006), p. 1538.YEV5-FGEukaryotic Ribosome Biogenesis: Analysis of the NucleolarEssential Yeast Nep1 Prote<strong>in</strong> and Mutations Caus<strong>in</strong>g theHuman Bowen-Conradi SyndromeK.-D. Entian*, B. MeyerJohann Wolfgang Goethe University, Cluster of Excellence: MacromolecularComplexes and Institute for Molecular Biosciences, Frankfurt a.M., GermanyIn eukaryotes, ribosome biogenesis needs the coord<strong>in</strong>ated <strong>in</strong>teraction ofrRNAs and prote<strong>in</strong>s. We identified the Nep1 (Emg1) prote<strong>in</strong> family as anessential prote<strong>in</strong> <strong>in</strong>volved <strong>in</strong> ribosome biogenesis. The yeast and thehuman Nep1 prote<strong>in</strong>s are localized <strong>in</strong> the nucleolus and the humanHsNep1 can complement the Nep1 function <strong>in</strong> a yeast nep1 mutant.A mutation which abolished the yeast Nep1 RNA b<strong>in</strong>d<strong>in</strong>g was responsiblefor the human Bown-Conradi-Syndrome (BCS) which causes early childdeath. Analysis of yeast and human mutations showed that the mutatedprote<strong>in</strong>s lost their nucleolar location and their RNA-b<strong>in</strong>d<strong>in</strong>g activity.Structure analysis of the Nep1 prote<strong>in</strong> suggested its function as a methyltransferase and, recently, we could confirm that Nep1 methylated 1191 <strong>in</strong>the decod<strong>in</strong>g center of the 18S rRNA. Additionally, the Nep1 prote<strong>in</strong> has adual function <strong>in</strong> ribosome biogenesis and supports Rps19 assembly to thepre-ribosome.Buchhaupt et al. (2006) Mol. Genet. Genomics. 276: 273; Buchhaupt et al. (2007) FEMS Yeast Res.7: 771,. Eschrich et al. (2002) Curr. Genet. 40: 326; Taylor et al. (2007) NAR 36: 1542; Armisteadet al. (2009) Am. J. Hum. Genet. 84, 728;Wurm et al. (2010) NAR 38: 2387, Meyer et al.(2011)NAR39: 1524.YEV6-FGHigh-level production of tetraacetyl phytosph<strong>in</strong>gos<strong>in</strong>e (TAPS)by comb<strong>in</strong>ed genetic eng<strong>in</strong>eer<strong>in</strong>g of sph<strong>in</strong>goid basebiosynthesis and L-ser<strong>in</strong>e availability <strong>in</strong> the non-conventionalyeast Pichia ciferriiC. Schorsch, E. Boles*Johann Wolfgang Goethe University, Institute of Molecular Biosciences,Frankfurt a.M., GermanyThe non-conventional yeast Pichia ciferrii (formerly known as Hansenulaciferri) is the only known organism that is specialized <strong>in</strong> produc<strong>in</strong>g andsecret<strong>in</strong>g large quantities of tetraacetyl phytosph<strong>in</strong>gos<strong>in</strong>e (TAPS), a fullyacetylated form of the sph<strong>in</strong>golipid <strong>in</strong>termediate phytosph<strong>in</strong>gos<strong>in</strong>e.Because of its unique feature this yeast is an attractive microorganism forthe <strong>in</strong>dustrial production of TAPS. Sph<strong>in</strong>golipids are important <strong>in</strong>gredients<strong>in</strong> cosmetic applications and formulations. They play important roles <strong>in</strong>human stratum corneum as they are <strong>in</strong>volved <strong>in</strong> sk<strong>in</strong> permeability andantimicrobial barrier homeostatic functions.Our work aimed to improve TAPS production by genetic eng<strong>in</strong>eer<strong>in</strong>g of P.ciferrii. In a first step, we could <strong>in</strong>crease TAPS production by improv<strong>in</strong>gprecursor availability. This was achieved by block<strong>in</strong>g degradation of L-ser<strong>in</strong>e which - <strong>in</strong> the first committed step of sph<strong>in</strong>golipid biosynthesis - iscondensed with palmitoyl-CoA by ser<strong>in</strong>e palmitoyltransferase. Moreover,genetic eng<strong>in</strong>eer<strong>in</strong>g of the sph<strong>in</strong>golipid pathway further <strong>in</strong>creasedsecretion of TAPS considerably. The f<strong>in</strong>al recomb<strong>in</strong>ant P. ciferrii stra<strong>in</strong>produced up to 199 mg (TAPS) * g -1 (cdw) with a maximal production rate of8.42 mg * OD 600nm -1 * h -1 and a titer of about 2 g * L -1 , and should beapplicable for <strong>in</strong>dustrial TAPS production.We would like to thank Evonik Industries and the German FederalM<strong>in</strong>istry of Education and Research (Bundesm<strong>in</strong>isterium für Bildung undForschung, BMBF; Bio<strong>in</strong>dustrie 2021, “FerDi”) for support.BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!