20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

133OTV011Large and frequent <strong>in</strong>trons <strong>in</strong> the 16S rRNA genes of largesulfur bacteriaV. Salman*, R. Amann, D. Shub, H. Schulz-VogtMax Planck Institut für mar<strong>in</strong>e Mikrobiologie, Mikrobiologie, Bremen,GermanyThe gene encod<strong>in</strong>g the small ribosomal subunit (16S/18S rDNA) serves asa prom<strong>in</strong>ent tool for the phylogenetic analysis and classification of liv<strong>in</strong>gorganisms ow<strong>in</strong>g to its high degree of conservation and its fundamentalfunction 1 . Nowadays, established methods to analyze this gene are tak<strong>in</strong>gadvantage of its conservation <strong>in</strong> size and nucleotide composition 2 . Wesequenced the 16S rRNA genes of not yet cultivated large sulfur bacteria,among them the largest known bacteriumThiomargarita namibiensis, andfound that the genes regularly conta<strong>in</strong> numerous self-splic<strong>in</strong>g <strong>in</strong>trons ofvariable length. The 16S rRNA genes of these bacteria can thus beenlarged to up to 3.5 kb.Us<strong>in</strong>g a modified CARD-FISH approach we can show that the <strong>in</strong>trons aretranscribed as part of the rRNA precursor, but they cannot be located <strong>in</strong> thenative ribosomes. Also, the <strong>in</strong>trons show self-splic<strong>in</strong>g abilities <strong>in</strong> <strong>in</strong>vitroexperiments, i.e. they autonomously excise from RNA and mediatethe ligation of the two exons. These f<strong>in</strong>d<strong>in</strong>gs lead to the conclusion that the<strong>in</strong>trons are capable of <strong>in</strong>dependent removal dur<strong>in</strong>g ribosome maturation,therefore m<strong>in</strong>imiz<strong>in</strong>g negative impact on the host organism. Remarkably,<strong>in</strong>trons have never been identified <strong>in</strong> bacterial 16S rRNA genes before,although be<strong>in</strong>g the most frequently sequenced gene today. This may becaused <strong>in</strong> part by a bias dur<strong>in</strong>g the PCR amplification step discrim<strong>in</strong>at<strong>in</strong>gaga<strong>in</strong>st longer homologues, as we can show experimentally as well. Thefact that <strong>in</strong>trons were now located <strong>in</strong> the 16S rRNA genes <strong>in</strong> the largesulfur bacteria, and have also been found <strong>in</strong> the 23S rRNA genes of severalother bacteria 3,4 , implies that the presence of <strong>in</strong>trons <strong>in</strong> the bacterial rRNAoperon is more common than previously recognized. Possibly, also othergroups of bacteria likewise have <strong>in</strong>trons <strong>in</strong> their 16S rRNA genes, whichwould have profound implications for common methods <strong>in</strong> molecularecology - it may cause systematic biases and lead to the exclusion of the<strong>in</strong>tron-conta<strong>in</strong><strong>in</strong>g fraction of a heterogeneous population. The generalimpact of this f<strong>in</strong>d<strong>in</strong>g on the standard analysis of rRNA genes is apparent.1N. R. Pace, G. J. Olsen, C. R. Woese, Cell45 (1986) p. 325-326.2C. R. Woese, Microbiology Reviews51(1987) p. 221-271.3 R. Raghavan, S. R. Miller, L. D. Hicks, M. F. M<strong>in</strong>nick, Journal of Bacteriology189 (2007) p. 6572-6579.4 C. L. Nesbø, W. F. Doolittle, Proceed<strong>in</strong>gs of the National Academy of Science U S A100 (2003) p. 10806-10811.5 This study was funded by the Max Planck Society.OTV012Regulation of anaerobic respiratory pathways <strong>in</strong>D<strong>in</strong>oroseobacter shibaeS. Laaß*, J. Kle<strong>in</strong>, D. Jahn, P. TielenTechnische Universität Braunschweig, Institut für Mikrobiologie,Braunschweig, GermanyDenitrification is part of the global nitrogen cycle and an importantmechanism of energy generation under anaerobic conditions.D<strong>in</strong>oroseobacter shibae, a representative of the globally abundant mar<strong>in</strong>eRoseobacter clade, is used as a model organism to study the transcriptionalresponse to chang<strong>in</strong>g oxygen conditions <strong>in</strong> the presence of nitrate. Itsannotated 4.4 Mb genome sequence revealed clustered genes, which are<strong>in</strong>volved <strong>in</strong> anaerobic respiratory energy metabolism with nitrate asalternative electron acceptor [1]. Interest<strong>in</strong>gly, D. shibae conta<strong>in</strong>s theperiplasmic nitrate reductase Nap <strong>in</strong>stead of the membrane bound Nar. D.shibae features nir, nor and nos operons <strong>in</strong> the vic<strong>in</strong>ity of the nap operon.An unusual high number of Crp/Fnr-like regulators have been predicted:Beside one FnrL-homologue with a [4Fe-4S] 2+ -cluster, six Dnr-likeregulators are found. The genes encod<strong>in</strong>g DnrD and DnrE are directlylocated between the nor- and nos-operon. We are <strong>in</strong>terested <strong>in</strong> identify<strong>in</strong>ggene regulatory patterns after shift<strong>in</strong>g from aerobic to anaerobicdenitrify<strong>in</strong>g conditions. Therefore, we used cont<strong>in</strong>uous cultivation of D.shibae <strong>in</strong> a chemostat comb<strong>in</strong>ed with time series microarray analysis. Wedetected anaerobic growth of D. shibae via denitrification. Transcriptomeanalysis revealed dist<strong>in</strong>ct patterns of gene expression <strong>in</strong> response tooxygen limitation. The change from aerobic to anaerobic growth showed asequential <strong>in</strong>duction of gene clusters encod<strong>in</strong>g the four reductases of thedenitrification mach<strong>in</strong>ery. Genes encod<strong>in</strong>g Fnr/Crp-like regulators showeddifferent expression levels over time. In response to oxygen limitation, animmediate upregulation of universal stress prote<strong>in</strong>s, f<strong>in</strong>e-tun<strong>in</strong>g of theelectron transport cha<strong>in</strong> components, as well as the downregulation of thetranslational apparatus was observed. Furthermore, we predict a regulatorynetwork for the anaerobic respiratory pathway <strong>in</strong> D. shibae.[1] Wagner-Döbler et al.(2009), ISME J. 4: 61-77.OTV013Influence of subcellular antigen localization with<strong>in</strong> different yeastgenera on the activation of ovalbum<strong>in</strong>-specific CD8 TlymphocytesS. Boschi Bazan 1 , G. Geg<strong>in</strong>at 2 , T. Bre<strong>in</strong>ig 3 , M.J. Schmitt 1 , F. Bre<strong>in</strong>ig* 11 Universität des Saarlandes, Molekular- und Zellbiologie, Saarbrücken,Germany2 Universitätskl<strong>in</strong>ikum Magdeburg, Kl<strong>in</strong>ische Mikrobiologie, Magdeburg,Germany3 Universität des Saarlandes, Informatik, Saarbrücken, GermanyYeasts of the genus Saccharomyces express<strong>in</strong>g recomb<strong>in</strong>ant antigens arecurrently evaluated as candidate T cell vacc<strong>in</strong>es. We compared the<strong>in</strong>teraction k<strong>in</strong>etics between four biotechnologically relevant yeast genera(Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyceslactis and Pichia pastoris) and human dendritic cells. Further, we analyzedthe activation capacity of recomb<strong>in</strong>ant yeasts express<strong>in</strong>g ovalbum<strong>in</strong>(OVA) either <strong>in</strong>tracellular, extracellular or surface-displayed by OVAspecificCD8 T lymphocytes. We found that the k<strong>in</strong>etic patterns of yeastuptake by phagocytic cells varied between the tested yeast genera and thatboth genus and subcellular OVA antigen localization <strong>in</strong>fluenced thestrength of T cell activation. In particular, <strong>in</strong> S. cerevisiae, a secretedantigen was less effectively delivered than its cytosolic variant, whereasmost efficient antigen delivery with P. pastoris was obta<strong>in</strong>ed by cellsurface bound antigen. Our data <strong>in</strong>dicate that prote<strong>in</strong> secretion might notbe an effective delivery pathway <strong>in</strong> yeast. [Bazan et al. (2011) Vacc<strong>in</strong>e 29;8165]OTV014The quest for new oxidative catalysts: Expression ofmetagenomic membrane-bound dehydrogenases from aceticacid bacteria <strong>in</strong> Gluconobacter oxydansB. Peters*, M. Mientus, D. Kostner, W. Liebl, A. EhrenreichTechnische Universität München, Lehrstuhl für Mikrobiologie, Freis<strong>in</strong>g,GermanyAcetic acid bacteria are used <strong>in</strong> biotechnology due to their ability to<strong>in</strong>completely oxidize a great variety of carbohydrates, alcohols and relatedcompounds. Many of these oxidations are unfeasible us<strong>in</strong>g organicchemistry. Because these reactions are mostly catalyzed by membranebounddehydrogenases, <strong>in</strong> a rapid, regio- and stereo-selective manner, thesubstrates do not have to be transported <strong>in</strong>to the cytoplasm. Due to the factthat many acetic acid bacteria can not be cultivated <strong>in</strong> the laboratory weuse a metagenomic approach to <strong>in</strong>dentify new membrane-bounddehydrogenases of potential value for biotechnology from a mother ofv<strong>in</strong>egar.The membrane-bound dehydrogenases are screened by sequence similarityfrom the metagenomic library and are functionally expressed <strong>in</strong> speciallydesigned Gluconobacter oxydans stra<strong>in</strong>s. In these stra<strong>in</strong>s all membranebounddehydrogenases were deleted us<strong>in</strong>g a clean deletion systemdeveloped by our group to avoid overlapp<strong>in</strong>g enzymatic specificities.Us<strong>in</strong>g specifically designed expression vectors we ensure functional<strong>in</strong>tegration <strong>in</strong> the membrane physiology of these organisms.In order to set up a high throughput assay to characterize the activity ofmembrane-bound dehydrogenases, we developed a whole cell system <strong>in</strong>microtiter-plates. The advantage of this system is a m<strong>in</strong>imized cellpreparation together with the ability to compare many sta<strong>in</strong>s or substrates<strong>in</strong> one experiment. We used this approach to determ<strong>in</strong>e the <strong>in</strong> vivosubstrate spectrum of several membrane-bound dehydrogenases fromacetic acid bacteria for the first time.OTV015Growth phase dependent changes of the RNA degrad<strong>in</strong>gexosome <strong>in</strong> Sulfolobus solfataricusC. Witharana*, L. Hou, C. Lassek, V. Roppelt, G. Klug, E. Evguenieva-HackenbergJustus-Liebig-Universität Giessen, Institut für Mikrobiologie undMolekularbiologie, Gießen, GermanyWe are <strong>in</strong>vestigat<strong>in</strong>g the exosome of the hyperthermophilic and acidophilicarchaeonSulfolobus solfataricus(1).The archaeal exosome is a prote<strong>in</strong>complex <strong>in</strong>volved <strong>in</strong> the degradation and the posttranscriptional tail<strong>in</strong>g ofRNA. The core of the complex is build of a phosphorolytically activehexameric r<strong>in</strong>g of the subunits Rrp41 and Rrp42, to which a trimeric capof the RNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s Rrp4 and/or Csl4 attaches (2). Rrp4 and Csl4confer different substrate specificity to the exosome (3). In addition tothese subunits, the archaeal DnaG prote<strong>in</strong> is stably associated with theexosome (4). The majority of the prote<strong>in</strong> complex <strong>in</strong>clud<strong>in</strong>g DnaG islocalized at the periphery of the cell and is detectable <strong>in</strong> the non-solublefraction (5). Here we show that DnaG directly <strong>in</strong>teracts with Csl4 <strong>in</strong> theexosome, and that it differently <strong>in</strong>fluences the activity of complexes withhomotrimeric Rrp4- or Csl4-caps<strong>in</strong> vitro. We confirmed the existence ofBIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!