20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

98MEP025Regulation of prist<strong>in</strong>amyc<strong>in</strong> biosynthesis <strong>in</strong> S. Prist<strong>in</strong>aespiralisJ. Guezguez*, Y. Mast, E. Sch<strong>in</strong>koIMIT, Microbiology/Biotechnology, Tüb<strong>in</strong>gen, GermanyThe streptogram<strong>in</strong> antibiotic prist<strong>in</strong>amyc<strong>in</strong>, produced by Streptomycesprist<strong>in</strong>aespiralis, is a mixture of two types of chemically unrelatedcompounds: prist<strong>in</strong>amyc<strong>in</strong> PI and PII, which are produced <strong>in</strong> a ratio of30:70. Prist<strong>in</strong>amyc<strong>in</strong> PI is a cyclic hexadepsipeptide, belong<strong>in</strong>g to the B-group of streptogram<strong>in</strong>s, while prist<strong>in</strong>amyc<strong>in</strong> PII has the structure of apolyunsaturated macrolactone of the A-group of streptogram<strong>in</strong>s. Bothcompounds alone <strong>in</strong>hibit the prote<strong>in</strong> biosynthesis by b<strong>in</strong>d<strong>in</strong>g to thepeptidyl transferase doma<strong>in</strong> of the 50S subunit of the ribosome and arebacteriostatic. The A-group prevents the b<strong>in</strong>d<strong>in</strong>g of the am<strong>in</strong>oacyl-tRNAto the 50S subunit of the ribosome. In contrast, the B-group facilitates therelease of the peptidyl-tRNA from the ribosome. Together they show astrong synergistic bactericidal activity, which can reach 100 times of theseparate components. The prist<strong>in</strong>amyc<strong>in</strong> biosynthetic gene cluster ischaracterized. It covers a region of about 210 kb where genes for PI andPII biosynthesis are <strong>in</strong>terspersed. Moreover, the prist<strong>in</strong>amyc<strong>in</strong> cod<strong>in</strong>gregion is <strong>in</strong>terrupted by a cryptic secondary metabolite gene cluster whichprobably encodes for an act<strong>in</strong>orhod<strong>in</strong>-like compound. Seven regulatorygenes were identified with<strong>in</strong> the 210 kb region:spbR, papR1, papR2,papR3, papR4, papR5 and papR6. SpbR (S.prist<strong>in</strong>aespiralisbutyrolactoneresponsivetranscriptional repressor) is a specific receptor prote<strong>in</strong> for -butyrolactones and the global regulator of prist<strong>in</strong>amyc<strong>in</strong> biosynthesis.papR1, papR2 and papR4 encode prote<strong>in</strong>s that are homologous to SARPswhich are pathway-specific transcriptional activator prote<strong>in</strong>s, whereaspapR3 and papR5 code both for prote<strong>in</strong>s that belong to the family of TetRrepressors. papR6 encodes a prote<strong>in</strong> belong<strong>in</strong>g to the class of responseregulators. On the basis of RT-PCR, bandshift and mutant analysis, aprelim<strong>in</strong>ary model of the regulation mechanism of prist<strong>in</strong>amyc<strong>in</strong>biosynthesis was established.Mast YJ, Wohlleben W, Sch<strong>in</strong>ko E.Identification and functional characterization of phenylglyc<strong>in</strong>ebiosynthetic genes <strong>in</strong>volved <strong>in</strong> prist<strong>in</strong>amyc<strong>in</strong> biosynthesis <strong>in</strong> Streptomyces prist<strong>in</strong>aespiralis.J Biotechnol.2010 Dec 10Mast Y, Weber T, Gölz M, Ort-W<strong>in</strong>klbauer R, Gondran A, Wohlleben W, Sch<strong>in</strong>ko E.Characterization of the'prist<strong>in</strong>amyc<strong>in</strong> supercluster' of Streptomyces prist<strong>in</strong>aespiralis.Microb Biotechnol. 2011 Oct 15MEP026Activation of a silent phenaz<strong>in</strong>e biosynthetic gene cluster fromStreptomyces reveals a novel phenaz<strong>in</strong>e conjugateO. Saleh 1 , T. Bonitz* 1 , A. Kulik 2 , N. Burkard 3 , A. Mühlenweg 4 , A. Vente 4 ,S. Polnick 1 , M. Lämmerhofer 1 , B. Gust 1 , H.-P. Fiedler 2 , L. Heide 11 University of Tüb<strong>in</strong>gen, Pharmaceutical Institute, Tüb<strong>in</strong>gen, Germany2 University of Tüb<strong>in</strong>gen, Faculty of Biology, Tüb<strong>in</strong>gen, Germany3 University of Tüb<strong>in</strong>gen, Institute for Organic Chemistry, Tüb<strong>in</strong>gen, Germany4 MerLion Pharmaceuticals GmbH, Berl<strong>in</strong>, GermanyThe activation of silent biosynthetic gene clusters is a pr<strong>in</strong>cipal challengefor genome m<strong>in</strong><strong>in</strong>g strategies <strong>in</strong> drug discovery. In the present study, aphenaz<strong>in</strong>e biosynthetic gene cluster was discovered <strong>in</strong> the Gram-positivebacterium Streptomyces tendae Tü1028. This gene cluster rema<strong>in</strong>ed silentunder a multitude of cultivation conditions, both <strong>in</strong> the genu<strong>in</strong>e producerstra<strong>in</strong> and <strong>in</strong> a heterologous expression stra<strong>in</strong>. However, <strong>in</strong>troduction of aconstitutive promoter upstream of the phenaz<strong>in</strong>e biosynthesis genes led tothe production of phenaz<strong>in</strong>e-1-carboxylic acid (PCA) and of a newderivative thereof, i.e. a conjugate of PCA and L-glutam<strong>in</strong>e. The l<strong>in</strong>kage ofPCA to L-glutam<strong>in</strong>e by amide bond formation was catalyzed by enzymesof the heterologous expression host Streptomyces coelicolor M512 andmay represent a detoxification mechanism. The gene cluster also conta<strong>in</strong>edgenes for all enzymes of the mevalonate pathway and for an aromaticprenyltransferase, thereby resembl<strong>in</strong>g gene clusters for prenylatedphenaz<strong>in</strong>es. However, purification and biochemical <strong>in</strong>vestigation of theprenyltransferase proved that it does not prenylate phenaz<strong>in</strong>es buthydroxynaphthalene substrates, show<strong>in</strong>g very similar properties as NphBof naphterp<strong>in</strong> biosynthesis (Kuzuyma et al., Nature 2005; 435: 983-7).MEP027Genetical analysis of the biosynthesis and z<strong>in</strong>c-regulation of[S,S]-EDDS, a biodegradable EDTA alternative produced byAmycolatopsis japonicumM. SpohnInterfakultäres Institut für Mikrobiologie und Infektionsmediz<strong>in</strong>,Mikrobiologie/Biotechnologie, Tüb<strong>in</strong>gen, GermanyEDDS (Ethylene-diam<strong>in</strong>e-disucc<strong>in</strong>ic acid) produced by Amycolatopsisjaponicum is a suitable biodegradable alternative for the syntheticchelat<strong>in</strong>g agent EDTA, which has become the highest concentrated wastecompound <strong>in</strong> surface waters.EDDS is isomeric with EDTA and has similar properties. But <strong>in</strong> contrast toEDTA it conta<strong>in</strong>s two asymmetric carbon atoms, result<strong>in</strong>g <strong>in</strong> the existenceof three optical isomers, [S,S]-EDDS, [R,R]-EDDS and [R,S]-EDDS. A.japonicum produces the biodegradable S,S-configuration of EDDS.The biosynthesis of EDDS <strong>in</strong> A. japonicum is strictly z<strong>in</strong>c regulated. Az<strong>in</strong>c concentration of 5 M represses the production of EDDS at any timeof the fermentation [CEBULLA, 1995].In a hypothetical EDDS biosynthesis pathway oxalacetate and theaprote<strong>in</strong>ogenic am<strong>in</strong>oacid diam<strong>in</strong>opropionic acid (DAP) are covalentlybonded to form an <strong>in</strong>termediate which is subsequently processed <strong>in</strong> severalsteps to f<strong>in</strong>ally form [S,S]-EDDS [CEBULLA, 1995]. DAP is also used asa build<strong>in</strong>g block <strong>in</strong> other secondary metabolites with elucidatedbiosynthesis pathway like zwittermic<strong>in</strong> A and staphyloferr<strong>in</strong> B [ZHAO, 2008;CHEUNG, 2009]. Genetic screen<strong>in</strong>g <strong>in</strong> A. japonicum us<strong>in</strong>g the sequenceencod<strong>in</strong>g the DAP-synthesiz<strong>in</strong>g enzymes resulted <strong>in</strong> the identification of a generegion encod<strong>in</strong>g putative EDDS-biosynthesis-enzymes.To confirm their <strong>in</strong>volvement <strong>in</strong> the EDDS biosynthesis we compared theirtranscription patterns of A. japonicum cultures grown <strong>in</strong> z<strong>in</strong>c-conta<strong>in</strong><strong>in</strong>g(none EDDS production) and z<strong>in</strong>c-free (EDDS production) media. Theputative DAP-biosynthesis genes are only expressed under EDDSproduction conditions and are strictly repressed only by z<strong>in</strong>c and no otherdivalent metal ion.By directed mutagenesis and heterologous expression we want to evidencethe responsibility of these z<strong>in</strong>c-repressed genes for the EDDS production.CEBULLA, I. (1995). Gew<strong>in</strong>nung komplexbildender Substanzen mittels Amycolatopsis orientalis.Dissertation, Universität Tüb<strong>in</strong>gen.CHEUNG, J; BEASLEY, F; LIU, S; LAJOIE, G AND HENRICHS, D (2009). Molecular charakterizationof staphyloferr<strong>in</strong> B biosynthesis <strong>in</strong> Staphylococcus aureus. Molecular Microbiology 74(3); 594-608.ZHAO, C; SONG, C; LUO, Y; YU, Z AND SUN, M. (2008). L-2,3-Diam<strong>in</strong>opropionate: One of thebuild<strong>in</strong>g blocks for the biosynthesis of Zwittermic<strong>in</strong> A <strong>in</strong> Bacillus thur<strong>in</strong>gensis susp. kurstaki stra<strong>in</strong> YBT-1520. FEBS Letters 582; 3125-3131.MEP028Analysis of the biosynthesis of ast<strong>in</strong>s from Aster tataricus andcyclochlorot<strong>in</strong>e from Penicillium islandicumL. Flor*, K.-H. van PéeTU Dresden, Biochemistry, Dresden, GermanyAst<strong>in</strong>s are cyclic pentapeptides isolated from roots of the plant Astertataricus.The root extract shows potent anti-tumour activity <strong>in</strong> mouse tests(1). However, the amounts of ast<strong>in</strong>s that can be isolated from plants arevery low and chemical synthesis is accompanied by negative impacts onthe environment. Therefore, the project ‚Multi enzyme systems <strong>in</strong>volved <strong>in</strong>ast<strong>in</strong> biosynthesis and their use <strong>in</strong> heterologous ast<strong>in</strong> production(MESIAB)‘ aims at enhanc<strong>in</strong>g the production of ast<strong>in</strong>s us<strong>in</strong>g moleculargenetic tools. So far, ast<strong>in</strong>s A-J are known. Cyclochlorot<strong>in</strong>e, a secondarymetabolite with high similarity to ast<strong>in</strong>s, has been isolated from the fungusPenicillium islandicum. Cyclochlorot<strong>in</strong>e is a hepatotoxic compoundcaus<strong>in</strong>g necrosis, vacuolation of liver cells and development of blood lakes(2). Because of the high similarity of the peptides (3), similar enzymesshould be <strong>in</strong>volved <strong>in</strong> the biosynthetic pathways of ast<strong>in</strong>s andcyclochlorot<strong>in</strong>e. Both metabolites conta<strong>in</strong> a dichlor<strong>in</strong>ated pyrrolecarboxylic acid derivative which is most likely derived from prol<strong>in</strong>e. It isassumed that chlor<strong>in</strong>ation occurs on the level of a peptide carrier prote<strong>in</strong>tethered pyrrol carboxylic acid moiety by a flav<strong>in</strong>-dependent halogenase.The anticarc<strong>in</strong>ogenic activity of ast<strong>in</strong>s relies on the cyclic peptide and onthe chlor<strong>in</strong>ated prol<strong>in</strong>e residue (4,5). So far, neither a flav<strong>in</strong>-dependenthalogenase nor nonribosomal peptide synthethases have been described <strong>in</strong>plants. Via HPLC-MS from extracts of dry roots of Aster tataricus alltypes of ast<strong>in</strong>s could be detected, as well as cyclochlorot<strong>in</strong>e from culturemedia of P. islandicum. For genetic analysis we are <strong>in</strong> the process ofsequenc<strong>in</strong>g the genome of P. islandicum and construct<strong>in</strong>g cDNA-librariesfor A. tataricus and P. islandicum.(1) Morita et al. (1995) Tetrahedron, 51, 4, 1121-1132(2) Ghoh et al. (1978) App. Environ. Microb., 35, 6, 1074-1078(3) Schumacher et al. (1999) Tet. Letters, 40, 455-458(4) Saviano et al., 2004, Biopolymers, 76, 6, 477-84(5) Cozzol<strong>in</strong>o et al. (2005) Carc<strong>in</strong>ogenesis, 26, 733-739MEP029Secondary metabolism and morphogenesis <strong>in</strong> the penicill<strong>in</strong>producer Penicillium chrysogenum is regulated by the velvet-likecomplexS. Bloemendal*, B. Hoff, K. Kopke, A. Katschorowski, S. Milbredt,J. Kamerewerd, U. KückRuhr-Universität Bochum, Christian Doppler Labor für "Biotechnologieder Pilze", Bochum, GermanyThe recent discovery of a velvet complex conta<strong>in</strong><strong>in</strong>g several globalregulators of secondary metabolism <strong>in</strong> the model fungus Aspergillusnidulans [1,2] raises the question whether similar type complexes directfungal development and secondary metabolism <strong>in</strong> genera other thanAspergillus. The filamentous fungus Penicillium chrysogenum is the ma<strong>in</strong><strong>in</strong>dustrial producer of the pharmaceutically relevant beta-lactam antibioticpenicill<strong>in</strong>. All three biosynthesis genes are found <strong>in</strong> a s<strong>in</strong>gle cluster and theexpression of these genes is known to be controlled by a complex networkof global regulators.Here we provide a functional analysis of a velvet-like complex <strong>in</strong> a P.chrysogenum producer stra<strong>in</strong> that underwent several rounds of UVmutagenesis dur<strong>in</strong>g a stra<strong>in</strong> improvement program [3,4]. This complexBIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!