20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

132understand the exact role of FlaH <strong>in</strong> the assembly and function of thecrenarchaeal flagellum.OTV007Subcellular position<strong>in</strong>g of a DNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> throughconstra<strong>in</strong>t movementL. Simon* 1 , M. Ulbrich 2 , J. Ries 3 , H. Ewers 3 , P.L. Graumann 11 University of Freiburg, Mikrobiologie, Freiburg, Germany2 University of Freiburg, Bioss (Centre for Biological signall<strong>in</strong>g studies)and Department for Medic<strong>in</strong>e, Institute of Physiology, Freiburg, Germany3 ETH Zürich, Laboratory of Physical Chemistry, Zürich, SwitzerlandMany prote<strong>in</strong> complexes localize to def<strong>in</strong>ed regions with<strong>in</strong> cells. Thebacterial SMC complex consists of a central SMC dimer and twoaccessory factors, ScpA and ScpB. SMC b<strong>in</strong>ds non-specifically to DNA <strong>in</strong>vitro, while ScpA and ScpB appear to confer a regulatory function. Thecomplex plays an important role <strong>in</strong> chromosome condensation andsegregation dur<strong>in</strong>g the bacterial cell cycle, and forms two discretesubcellular centres, one <strong>in</strong> each cell half, when imaged with conventionalepi-fluorescence microscopy. Us<strong>in</strong>g s<strong>in</strong>gle molecule microscopy andtrack<strong>in</strong>g we show that localization is achieved through limited yet rapidmovement of the SMC subunits through a cell half, while the accessoryScpAB subunits mediate temporal arrest of a subset of SMC molecules atthe centre of a cell half. Thus, specific localization is achieved bymovement through the nucleoid and transient arrest at the nucleoid centre.FRAP studies show that the SMC pool has a high turnover with<strong>in</strong> a cellhalf and is also replenished through de novo prote<strong>in</strong> synthesis, yield<strong>in</strong>g anadditional level of prote<strong>in</strong> dynamics. Diffusion/movement with<strong>in</strong> a limitedcompartment and transient arrest may be a general means to accumulateprote<strong>in</strong>s with<strong>in</strong> non-compartmentalized cells.OTV008Prote<strong>in</strong> complexes <strong>in</strong>volved <strong>in</strong> the electron transport cha<strong>in</strong> ofanammox bacteriaN. de Almeida* 1 , H. Wessels 2 , W. Maalcke 1 , J. Keltjens 1 , M. Jetten 1 , B. Kartal 11 Radboud University Nijmegen , Microbiology, Nijmegen, Netherlands2 Radboud University Nijmegen Medical Centre, Department of Pediatrics,Nijmegen, NetherlandsAnammox bacteria comb<strong>in</strong>e ammonia with nitrite to d<strong>in</strong>itrogen gas withnitric oxide and hydraz<strong>in</strong>e as <strong>in</strong>termediates (1). Oxidation of the latteryields low-redox-potential electrons, which can be used for CO 2 fixation.We hypothesize that these are replenished through the oxidation of nitriteto nitrate by a nitrite oxidiz<strong>in</strong>g system (NAR) (2). As nitrite is a relativelypoor reductant, the electrons have to be energized to enter the bc 1-complexor to feed a qu<strong>in</strong>one pool, which implies reverse electron transport.The gene cluster that conta<strong>in</strong>s the catalytic subunits of nitrite oxidiz<strong>in</strong>g(narGH) system covers almost the full natural repertoire of electroncarriers. This <strong>in</strong>cludes genes encod<strong>in</strong>g six putative heme-conta<strong>in</strong><strong>in</strong>gprote<strong>in</strong>s and two putative blue-copper prote<strong>in</strong>s and a putative anchor to themembrane show<strong>in</strong>g homology to a cytochrome bd oxidase subunit (2).Furthermore, the genome of the anammox bacterium Candidatus Kueneniastuttgartiensis shows a high redundancy of respiratory genes, suggest<strong>in</strong>g an<strong>in</strong>tricate cellular electron transport system. Interest<strong>in</strong>gly, the three operonsencod<strong>in</strong>g for the bc 1 complexes, complex III <strong>in</strong> the respiratory cha<strong>in</strong>, alldiffer <strong>in</strong> their subunit composition from the canonical bc 1 complexes <strong>in</strong>other microorganisms. One operon consists only of a heme b /c fusionprote<strong>in</strong> and the Rieske prote<strong>in</strong>. The other two operons encode for multiheme c conta<strong>in</strong><strong>in</strong>g genes, NAD(P) oxidoreductase subunits and,<strong>in</strong>trigu<strong>in</strong>gly one of them conta<strong>in</strong>s a hydroxylam<strong>in</strong>e oxidoreductase subunit.The comb<strong>in</strong>ation of these subunits strongly suggests that electrons derivedfrom different oxidation reactions could be wired to different electronacceptors, once enter<strong>in</strong>g the bc 1 complexes.The whole prote<strong>in</strong> complement of K. stuttgartiensis membranes wasdeterm<strong>in</strong>ed with prote<strong>in</strong> correlation profil<strong>in</strong>g us<strong>in</strong>g LC-MS/MS data fromconsecutive Blue Native (BN) gel slices (3). The detection of differentcomplexes was coupled to <strong>in</strong>-gel activities of the respiratory complexes <strong>in</strong>BN gels. Further, the catalytic subunit of the nitrite oxidiz<strong>in</strong>g system of K.stuttgartiensis was purified.1) Kartal B, et al (2011): Molecular mechanism of anaerobic ammonium Oxidation. Nature 479: 127-130.2) de Almeida NM, et al (2011): Prote<strong>in</strong>s and prote<strong>in</strong> complexes <strong>in</strong>volved <strong>in</strong> the biochemical reactions ofanaerobic ammonium-oxidiz<strong>in</strong>g bacteria. Biochemical Society Transactions. 39: 303-308.3)Wessels JCT, et al (2009) LC-MS/MS as an alternative for SDS-PAGE <strong>in</strong> blue native analysis of prote<strong>in</strong>complexes. Proteomics 17: 4221-4228.OTV009Replication fork movement and methylation governs SeqAb<strong>in</strong>d<strong>in</strong>g to the Escherichia coli chromosomeT. Waldm<strong>in</strong>ghaus* 1 , C. Weigel 2 , K. Skarstad 31 LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität,Marburg, Germany2 HTW, Department of Life Science Eng<strong>in</strong>eer<strong>in</strong>g, Berl<strong>in</strong>, Germany3 Norwegian Institute for Cancer Research, Cell Biology, Oslo, NorwayChromosomes are composed of enormously long DNA molecules whichmust be distributed correctly as the cells grow and divide. In Escherichiacoli the SeqA prote<strong>in</strong> might be <strong>in</strong>volved <strong>in</strong> organization of new DNAbeh<strong>in</strong>d the replication forks. SeqA b<strong>in</strong>ds specific to GATC sequenceswhich are methylated on the A of the old strand but not on the new strand.Such hemi-methylated DNA is produced by progression of the replicationforks and lasts until Dam methyltransferase methylates the new strand. It istherefore believed that a region of hemi-methylated DNA covered bySeqA follows the replication fork. We show that this is <strong>in</strong>deed the case byus<strong>in</strong>g global ChIP on Chip analysis of SeqA <strong>in</strong> cells synchronizedregard<strong>in</strong>g DNA replication. To assess hemi-methylation we developed thefirst genome wide method for methylation analysis <strong>in</strong> bacteria. Acomparison of rapid and slow growth conditions showed that <strong>in</strong> cells withmultiple replication forks per chromosome, the old forks b<strong>in</strong>d little SeqA.Analysis of stra<strong>in</strong>s with strong SeqA b<strong>in</strong>d<strong>in</strong>g sites at differentchromosomal loci supported this f<strong>in</strong>d<strong>in</strong>g. The results <strong>in</strong>dicate that a reorganizationof the chromosome occurs at a timepo<strong>in</strong>t co<strong>in</strong>cid<strong>in</strong>g with theend of SeqA dependent orig<strong>in</strong> sequestration. We suggest that areorganization event occurs result<strong>in</strong>g <strong>in</strong> both orig<strong>in</strong> desequestration andloss of old replication forks from the SeqA structures.Waldm<strong>in</strong>ghaus, T. and Skarstad, K. (2009) The Escherichia coli SeqA prote<strong>in</strong>. Plasmid, 61, 141-150.Waldm<strong>in</strong>ghaus, T. and Skarstad, K. (2010) ChIP on Chip: surpris<strong>in</strong>g results are often artifacts. BMCGenomics. 11, 414.OTV010Translocation of sodium ions by the ND5 subunit ofmitochondrial complex I from the yeast Yarrowia lipolyticaH. Grönheim*, W. Steffen, J. SteuberUniversität Hohenheim, Mikrobiologie FG Zelluläre Mikrobiologie,Stuttgart, GermanyMitochondrial complex I (NADH:ubiqu<strong>in</strong>one oxidoreductase), localized <strong>in</strong>the <strong>in</strong>ner mitochondrial membrane, is the first enzyme of the electrontransport cha<strong>in</strong> of the oxidative phosphorylation system. The L-shapedcomplex is partitioned <strong>in</strong>to a peripheral arm and a membrane-bounddoma<strong>in</strong>.In the peripheral arm electrons from NADH are transferred to ubiqu<strong>in</strong>onevia iron sulfur clusters, us<strong>in</strong>g FMN as cofactor. This process is coupled, byconformational changes as structural data <strong>in</strong>dicates, with the translocationof protons by the membrane-bound doma<strong>in</strong> (Brandt 2006; Efremov,Baradaran et al. 2010; Efremov and Sazanov 2011). Here we focus on theND5 subunit of the membrane-bound doma<strong>in</strong> of the mammalian complexwhich is considered to be <strong>in</strong>volved <strong>in</strong> the translocation of protons.Previous studies showed that the ND5 homologue NuoL from E. colicomplex I transports sodium ions across the membrane (Gemperli,Schaffitzel et al. 2007). We also observed that ND5 from human complexI, when <strong>in</strong>serted <strong>in</strong>to the <strong>in</strong>ner mitochondrial membrane of S. cerevisiae,leads to an <strong>in</strong>creased salt sensitivity of the yeast cells, suggest<strong>in</strong>g that ND5promotes the leakage of cations across the mitochondrial membrane(Steffen, Gemperli et al. 2010). Here, we <strong>in</strong>vestigate the cation transportactivity of the ND5 homologue from the yeast Y. lipolytica produced asGFP-ND5 fusion prote<strong>in</strong> <strong>in</strong> ER vesicles from S. cerevisiae. The topologyof ND5 <strong>in</strong> the vesicles was analyzed by limited proteolysis. The N-term<strong>in</strong>al GFP fusion to ND5 was oriented towards the external lumen ofER vesicles. This uniform orientation of ND5 <strong>in</strong> vesicles was theprerequisite for cation transport studies where a Na + concentration gradientwas applied. ER vesicles conta<strong>in</strong><strong>in</strong>g GFP-ND5 exhibited a significantlyhigher Na + uptake activity than control vesicles without ND5. This<strong>in</strong>dicates that the <strong>in</strong>dividual ND5 prote<strong>in</strong> which is highly related tosecondary Na + /H + antiporters conta<strong>in</strong>s a channel for Na + .Brandt, U. (2006). "Energy convert<strong>in</strong>g NADH:qu<strong>in</strong>one oxidoreductase (complex I)."Annu Rev Biochem75:69-92.Efremov, R. G., R. Baradaran, et al. (2010). "The architecture of respiratory complex I."Nature465(7297):441-445.Efremov, R. G. and L. A. Sazanov (2011). "Structure of the membrane doma<strong>in</strong> of respiratory complexI."Nature476(7361): 414-420.Gemperli, A. C., C. Schaffitzel, et al. (2007). "Transport of Na + and K + by an antiporter-related subunit fromthe Escherichia coli NADH dehydrogenase I produced <strong>in</strong> Saccharomyces cerevisiae."Arch Microbiol188(5):509-521.Steffen, W., A. C. Gemperli, et al. (2010). "Organelle-specific expression of subunit ND5 of human complexI (NADH dehydrogenase) alters cation homeostasis <strong>in</strong> Saccharomyces cerevisiae."FEMS Yeast Res10(6):648-659.BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!