20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

67CEP009The cation diffusion facilitator prote<strong>in</strong>s MamB and MamM ofMagnetospirillum gryphiswaldense are <strong>in</strong>volved <strong>in</strong> magnetitebiom<strong>in</strong>eralization and magnetosome membrane assemblyR. Uebe* 1 , K. Junge 1 , V. Henn 1 , G. Poxleitner 1 , E. Katzmann 1,2 , J. Plitzko 2 ,R. Zarivach 3 , T. Kasama 4 , G. Wanner 1 , M. Pósfai 5 , L. Böttger 6 ,B. Matzanke 6 , D. Schüler 11 Bereich Mikrobiologie/Ludwig-Maximilians-Universität, DepartmentBiologie I, München, Germany2 Max Planck Institut für Biochemie, Mart<strong>in</strong>sried, Germany3 Ben Gurion University of the Negev, Beer-Sheva, Israel4 Technical University of Denmark, Kongens Lyngby, Denmark5 University of Pannonia, Veszprém, Hungary6 Universität zu Lübeck, Lübeck, GermanyMagnetotactic bacteria have the ability to orient along geomagnetic fieldl<strong>in</strong>es based on the formation of <strong>in</strong>tracellular nanometer-sized, membraneenclosedmagnetic iron m<strong>in</strong>erals, called magnetosomes. The formation ofthese unique bacterial organelles <strong>in</strong>volves several processes such ascytoplasmic membrane <strong>in</strong>vag<strong>in</strong>ation and magnetosome vesicle formation,accumulation of large amounts of iron <strong>in</strong> the vesicles and crystallization ofmagnetite. Among the most abundant prote<strong>in</strong>s associated with themagnetosome membrane of Magnetospirillum gryphiswaldense are MamBand MamM, which were implicated <strong>in</strong> magnetosomal iron transportbecause of their similarity to the cation diffusion facilitator family. Herewe demonstrate that MamB and MamM are multifunctional prote<strong>in</strong>s<strong>in</strong>volved <strong>in</strong> several steps of magnetosome formation. Whereas bothprote<strong>in</strong>s are essential for magnetite biom<strong>in</strong>eralization, only deletion ofmamB resulted <strong>in</strong> loss of magnetosome membrane vesicles. MamBstability depended on the presence of MamM by formation of aheterodimer complex. In addition, MamB was found to <strong>in</strong>teract withseveral other prote<strong>in</strong>s <strong>in</strong>clud<strong>in</strong>g the PDZ1 doma<strong>in</strong> of MamE, a putativemagnetosome associated protease. Whereas any modification of MamBresulted <strong>in</strong> loss of function, substitution of am<strong>in</strong>o acids with<strong>in</strong> MamM leadto <strong>in</strong>creased formation of polycrystall<strong>in</strong>e <strong>in</strong>stead of s<strong>in</strong>gle crystals formed<strong>in</strong> the wild type. A s<strong>in</strong>gle am<strong>in</strong>o acid substitution with<strong>in</strong> MamM resulted<strong>in</strong> the formation of crystals consist<strong>in</strong>g of the iron(III) oxide hematite,which coexisted with crystals of the mixed-valence oxide magnetite.Together, the data <strong>in</strong>dicate that MamM and MamB have complexfunctions and are <strong>in</strong>volved <strong>in</strong> the control of different key steps ofmagnetosome formation, which are l<strong>in</strong>ked by their direct <strong>in</strong>teraction.CEP010Energy conservation <strong>in</strong> Archaea: the unique way of IgnicoccusS. Daxer* 1 , L. Kreuter 1 , U. Küper 1 , R. Rachel 2 , H. Huber 11 Universität Regensburg, Institut für Mikrobiologie, Regensburg, Germany2 Universität Regensburg, Zentrum für Elektronenmikroskopie der Fakultätfür Biologie und Vorkl<strong>in</strong>ische Mediz<strong>in</strong>I, Regensburg, GermanyIn prokaryotes, only cytoplasmic membranes have been described so far toharbor ATP synthase complexes. The hyperthermophilic,chemolithoautotrophic Crenarchaeon Ignicoccus hospitalis (1) is the firstorganism, which does not follow this rule. The organism exhibits anunusual cell envelope consist<strong>in</strong>g of an <strong>in</strong>ner and an outermost membranethat are separated by a huge <strong>in</strong>ter-membrane compartment (IMC).Recently it has been shown that the ATP synthase and H 2:sulfuroxidoreductase complexes of I. hospitalis are located <strong>in</strong> the outermostmembrane (2). As a consequence this membrane is energized by harbor<strong>in</strong>gthe primary and secondary proton pumps which are necessary for energyconservation with<strong>in</strong> the IMC. As a further characteristic the outermostmembrane conta<strong>in</strong>s multiple copies of the pore-form<strong>in</strong>g complex Ihomp1,which was proposed to be a prerequisite for the attachment and <strong>in</strong>teractionwith Nanoarchaeum equitans. S<strong>in</strong>ce I. hospitalis is the only known hostfor this organism (3) the localization of all these complexes was<strong>in</strong>vestigated <strong>in</strong> all members of the genus Ignicoccus. Immunofluorescenceexperiments with whole cells showed that the extraord<strong>in</strong>ary localization ofthe ATP synthase and H 2:sulfur oxidoreductase complex is a commonfeature of all known members of the genus Ignicoccus. Therefore, theoutermost membrane of all Ignicoccus stra<strong>in</strong>s is energized and ATP isgenerated <strong>in</strong> the IMC. Further <strong>in</strong>vestigations showed that the acetyl-CoAsynthetasewhich activates acetate to acetyl-CoA by consum<strong>in</strong>g ATP isalso associated to the outermost membrane of all Ignicoccus members. Incontrast, the pore-form<strong>in</strong>g complex Ihomp1 is exclusively found on thecell surface of I. hospitalis, support<strong>in</strong>g the hypothesis of its <strong>in</strong>volvement <strong>in</strong>the attachment of N. equitans.(1) Paper W. et al. 2007 Int. J. Syst. Evol. Microbiol. 57: 803-808(2) Kueper U. et al. 2010 PNAS 107: 3152-3156(3) Jahn U. et al. 2008 J. Bacteriol. 190: 1743-1750(4) This project is supported by a grant from the DFGCEP011Adsorption k<strong>in</strong>etics of cell wall components of gram positivebacteria on technical surfaces studied by QCM-DM. Suhr* 1 , T. Günther 1 , J. Raff 2,3 , K. Pollmann 31 Helmholtz-Center Dresden-Rossendorf, Institute of Radiochemistry,Biophysics, Dresden, Germany2 Helmholtz-Center Dresden-Rossendorf, Institute of Radiochemistry,Biogeochemistry, Dresden, Germany3 Helmholtz-Center Dresden-Rossendorf, Helmholtz Institute Freiberg forResource Technology, Dresden, GermanyIn general, the cell wall components of gram-positive bacteria e.g. s<strong>in</strong>glelipid bilayer, peptidoglycan, Surface-layer prote<strong>in</strong>s (S-layer) and otherbiopolymers are well studied. These cell wall components are <strong>in</strong>terest<strong>in</strong>gfor several bio-<strong>in</strong>duced technical applications such as biosorptivematerials. Although biosorption processes have been <strong>in</strong>tensively<strong>in</strong>vestigated, the <strong>in</strong>vestigation of metal <strong>in</strong>teraction with biomolecules aswell as adsorption processes on substrates on molecular level rema<strong>in</strong>schalleng<strong>in</strong>g.In our work we used the quartz crystal microbalance with dissipationmonitor<strong>in</strong>g (QCM-D) <strong>in</strong> order to study the layer formation of cell wallcompounds and <strong>in</strong>teraction processes on the nano scale range.This analytical method allows the detailed detection of array formation ofbacterial S-layer prote<strong>in</strong>s and gives a better understand<strong>in</strong>g of the selfassembl<strong>in</strong>gprocesses. S-layer prote<strong>in</strong>s as a part of the outer cell envelopeof many eubacteria and archaea form paracrystall<strong>in</strong>e prote<strong>in</strong> lattices <strong>in</strong>stra<strong>in</strong> depended geometrical structures [1]. Once isolated the prote<strong>in</strong>sexhibit the ability to form these lattices on different k<strong>in</strong>ds of <strong>in</strong>terfaces andpossesses equal to the bacteria cells high metal b<strong>in</strong>d<strong>in</strong>g capacities. Theseproperties open a wide spectrum of applications e.g. ultrafiltrationmembranes for organic and <strong>in</strong>organic ions and molecules, templates for thesynthesis of catalytic nanoparticles and other bio-eng<strong>in</strong>eered materials [2, 3].By perform<strong>in</strong>g different experiments with and without modification oftechnical surfaces with adhesive promoters e.g. polyelectrolytes it ispossible to make exact statements regard<strong>in</strong>g coat<strong>in</strong>g k<strong>in</strong>etics, layerstability and <strong>in</strong>teraction with metals. Subsequent atomic force microscopy(AFM) studies enable the imag<strong>in</strong>g of bio nanostructures and revealcomplex <strong>in</strong>formation of structural properties. Aim of these <strong>in</strong>vestigationsis the assembly of a simplified biological multilayer based on cellcompounds of gram positive bacteria <strong>in</strong> order to clarify sorption processes<strong>in</strong> a complex system. The understand<strong>in</strong>g of coat<strong>in</strong>g, biological andbiological-metal <strong>in</strong>teraction processes is <strong>in</strong>terest<strong>in</strong>g for different technicalapplications.[1] U.B. Sleytr et al., Prog. Surf. Sci. 68 (2001), 231-278.[2] K. Pollmann et al., Biotechnology Advances 24 (2006), 58- 68.[3] J. Raff et al., Chem. Mater. 15 (2003), 240-244.CEP012Visualization of an S-layer <strong>in</strong> the anammox bacteriumKuenenia stuttgartiensisM. van Teesel<strong>in</strong>g* 1 , A. Kl<strong>in</strong>gl 2,3 , R. Rachel 2 , M. Jetten 1 , L. van Niftrik 11 Radboud University Nijmegen, Microbiology, Nijmegen, Netherlands2 Universitaet Regensburg, Centre for EM, Regensburg, Germany3 Philipps Universität Marburg, LOEWE Research Centre for SyntheticMicrobiology (SYNMIKRO), Marburg, Germany“Candidatus Kuenenia stuttgartiensis” is an anaerobic ammoniumoxidiz<strong>in</strong>g (anammox) bacterium belong<strong>in</strong>g to the order of Brocadiales <strong>in</strong>the phylum of the Planctomycetes. Anammox bacteria are important <strong>in</strong>nature where they contribute significantly to oceanic nitrogen loss and areapplied <strong>in</strong> wastewater treatment for the removal of ammonium. The cellbiology of anammox bacteria is extraord<strong>in</strong>ary; the cells are divided <strong>in</strong>tothree membrane-bounded compartments. In addition, the cell wall of K.stuttgartiensis does not classify as a typical bacterial cell wall, s<strong>in</strong>ce itlacks peptidoglycan and does not seem to have a typical outer membrane.The question thus arises how the structural <strong>in</strong>tegrity of the cells isma<strong>in</strong>ta<strong>in</strong>ed. To answer this question the cell wall was studied via freezeetch<strong>in</strong>g experiments. Electron micrographs showed the presence of ahexagonal surface layer (S-layer) <strong>in</strong> the majority of K. stuttgartiensis cells.S-layers, crystall<strong>in</strong>e two-dimensional arrays of prote<strong>in</strong>aceous subunits thatmake up the outermost layer of many bacterial cell envelopes, have beenpreviously found to have a shape determ<strong>in</strong><strong>in</strong>g function <strong>in</strong> some bacteria. Itis therefore hypothesized that the S-layer could provide structural <strong>in</strong>tegrityto the K. stuttgartiensis cell. Currently attempts are be<strong>in</strong>g made to isolatethe S-layer fromK. stuttgartiensiscells to characterize the S-layer andidentify the prote<strong>in</strong> (subunits).BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!