20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

164The study results <strong>in</strong>dicated that some stra<strong>in</strong>s of iron bacteria were veryeffective to remove diclofenac under axenic condition. Among the 18tested stra<strong>in</strong>s, 4 stra<strong>in</strong>s showed removal efficiency above 90%.[1] Ternes TA, 1998. Occurrence of drugs <strong>in</strong> German sewage treatment plants and rivers. Water Res 32:3245-3260[2] Heberer T, Reddersen K, Mechl<strong>in</strong>ski A, 2002. From municipal sewage to dr<strong>in</strong>k<strong>in</strong>g water: fate andremoval of pharmaceutical residues <strong>in</strong> the aquatic environment <strong>in</strong> urban areas. Water Sci. Technol. 46:81-88[3] Ashton D, Hilton M, Thomas KV, 2004. Investigat<strong>in</strong>g the environmental transport of humanpharmaceuticals to streams <strong>in</strong> the United K<strong>in</strong>gdom. Sci Total Environ 333:167-184[4] Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA, 2007. Occurrence and removal of pharmaceuticalsand endocr<strong>in</strong>e disruptors <strong>in</strong> South Korean surface, dr<strong>in</strong>k<strong>in</strong>g , and waste waters. Water Res 41(5):1013-1021[5] Zhang YJ, Geissen SU, Gal C, 2008b. Carbamazep<strong>in</strong>e and diclofenac: removal <strong>in</strong> wastewater treatmentplants and occurrence <strong>in</strong> water bodies. Chemosphere 73: 1151-1161[6] Monteiro SC, Boxall ABA, 2010. Occurrence and fate of human pharmaceuticals <strong>in</strong> the environment.Rev Environ Contam Toxicol 202:53-154OTP123Fluorescence microscopical analysis of PHB granuleassociated prote<strong>in</strong>s (PGAPs) <strong>in</strong> Ralstonia eutropha H16D. Rais*, D. Pfeiffer*, D. JendrossekInstitut für Mikrobiologie, Universität Stuttgart, Stuttgart, GermanyRalstonia eutropha H16 has become the model organism for study<strong>in</strong>gmetabolism of poly(3-hydroxybutyrate) (PHB), an importantbiodegradable biopolymer [1]. Despite > 2 decades of <strong>in</strong>tense research onPHB metabolism new PHB granule-associated prote<strong>in</strong>s were recentlydiscovered us<strong>in</strong>g a two hybrid screen<strong>in</strong>g approach [2]. Meanwhile, at least19 prote<strong>in</strong>s are known that are important for biosynthesis, ma<strong>in</strong>tenance and<strong>in</strong>tracellular mobilization of PHB <strong>in</strong> R. eutropha. These are: acetoacetyl-CoA-thiolase (PhaA) and acetoacetyl-CoA reductase (PhaB) that arenecessary for synthesis of the PHB monomer (3-hydroxybutyryl-CoA),five phas<strong>in</strong>prote<strong>in</strong>s (PhaPs) that <strong>in</strong>clude major constituents of the granulessurface layer, 9 PHB depolymerases (PhaZs) (two of which are oligomerhydrolases), PHB synthase (PhaC), regulator PhaR and recently discoveredPhaM that ensures equal distribution of PHB granules dur<strong>in</strong>g cell division[3]. Many of the above-mentioned prote<strong>in</strong>s presumably are attached to thePHB granules surface layer. However, only for PhaC, PhaR, PhaP1,PhaP5, PhaZa1 and PhaM data are published that confirm<strong>in</strong>vivoattachment of these PGAPs. In this study we determ<strong>in</strong>ed subcellularlocalization of all currently known 5 phas<strong>in</strong> prote<strong>in</strong>s (PhaP1-5) undercondition permissive and restrictive for PHB accumulation. N- and C-term<strong>in</strong>al fusions of the respective phas<strong>in</strong> prote<strong>in</strong> with eYfp wereconstructed and the respective fusions cloned on a braod host rangeplasmid were conjugatively transfered to R. eutropha. All fusions wereexpressed <strong>in</strong> the wild type H16, <strong>in</strong> stra<strong>in</strong> PHB-4 (a chemically <strong>in</strong>ducedmutant with a nonsense mutation <strong>in</strong> PhaC) and <strong>in</strong> a chromosomal phaCmutant. Similar fusions were constructed for all putative PHBdepolymerases. The results for the depolymerases will be presented <strong>in</strong> aseparated poster (A. Sznajder et al.).[1] Re<strong>in</strong>ecke, F., Ste<strong>in</strong>büchel, A. (2009). J. Mol. Microbiol. Biotechnol. 16:91-108[2] Pfeiffer D., Jendrossek D. (2011). Microbiology. 157:2795-807.[3] Pfeiffer D., Wahl A., Jendrossek D. (2011). Mol Microbiol.82:936-51.OTP124Elucidat<strong>in</strong>g the CRISPR-Cas-System of Methanosarc<strong>in</strong>a mazeiGö1D. Jäger, K. Weidenbach, L. Nickel, R. Schmitz-Streit*Christian-Albrechts-Universität Kiel, Institut für Allgeme<strong>in</strong>e Mikrobiologie,Kiel, GermanyMethanosarc<strong>in</strong>a mazei stra<strong>in</strong> Gö1 (M. mazei) belongs to themethylotrophic methanogens of the order Methanosarc<strong>in</strong>ales, which havethe most versatile substrate spectrum with<strong>in</strong> the methanogenic archaeacontribut<strong>in</strong>g significantly to the production of the green house gas (Rogers& Whitman, 1991; Thauer, 1998).The genome annotation published <strong>in</strong> 2002 (Deppenmeier et al., 2002) didnot <strong>in</strong>clude the <strong>in</strong>formation on potential CRISPR loci <strong>in</strong> archaeal modelorganism. Our recent <strong>in</strong>vestigations however identified the presence of twoma<strong>in</strong> CRISPR loci <strong>in</strong> M. mazei. As characteristic for CRISPR loci, both ofthem conta<strong>in</strong> a conserved direct repeat of 37 nucleotides <strong>in</strong> length. Thefirst CRISPR locus, conta<strong>in</strong><strong>in</strong>g 47 direct repeats with spacers, is flanked bya Cas type I-B system, whereas the second locus (conta<strong>in</strong><strong>in</strong>g 81 directrepeats) is flanked by a polycistronic operon encod<strong>in</strong>g a RAMP module ofCAS prote<strong>in</strong>s (type III-B). Interest<strong>in</strong>gly, based on sequence homology ofalready known Cas6 prote<strong>in</strong>s, none of the loci obviously encode for themajor endoribonuclease of crRNA maturation. Here we present theidentification of potential M. mazei Cas6 orthologs. The biochemicalcharacterization of the prote<strong>in</strong>(s) will be presented and discussed.Deppenmeier, U., Johann, A., Hartsch, T., Merkl, R., Schmitz, R. A., Mart<strong>in</strong>ez-Arias, R., Henne, A., et al.(2002). The genome of Methanosarc<strong>in</strong>a mazei: evidence for lateral gene transfer between bacteria andarchaea.J Mol Microbiol Biotechnol,4(4), 453-461.Rogers, J. E., & Whitman eds., W. B. (1991). Microbial production and consumption of greenhouse gases:methane, nitrogen oxides and halomethanes.ASM Press, Wash<strong>in</strong>gton DC.Thauer, R. K. (1998). Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 MarjoryStephenson Prize Lecture.Microbiology,144 ( Pt 9, 2377-2406.OTP125SMC is recruited to oriC by ParB and promotes chromosomesegregation <strong>in</strong> Streptococcus pneumoniae and Bacillus subtilisA. M<strong>in</strong>nen* 1 , L. Attaiech 2 , M. Thon 2 , *F. Bürmann 1 , J.-W. Veen<strong>in</strong>g 2 ,S. Gruber 11 Max Planck Institute of Biochemistry, Chromosome Organization andDynamics, Mart<strong>in</strong>sried, Germany2 Gron<strong>in</strong>gen Biomolecular Sciences and Biotechnology Institute, Gron<strong>in</strong>gen,NetherlandsReliable segregation of replicated chromosomes is a prerequisite forma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g genomic <strong>in</strong>tegrity. Multi-prote<strong>in</strong> complexes formed by theStructural Ma<strong>in</strong>tenance of Chromosomes (SMC) prote<strong>in</strong>s are essentialplayers for perform<strong>in</strong>g this task both <strong>in</strong> mitosis and meiosis, as well asdur<strong>in</strong>g the bacterial cell cycle.SMC prote<strong>in</strong>s are highly conserved <strong>in</strong> all doma<strong>in</strong>s of life. Most bacteriaexpress a s<strong>in</strong>gle SMC that is associated with the kleis<strong>in</strong> ScpA and ScpBprote<strong>in</strong> to form a complex called "bacterial condens<strong>in</strong>". In many bacterialspecies condens<strong>in</strong> is <strong>in</strong>dispensable for proper chromosome condensationand segregation.We found that condens<strong>in</strong>s of Bacillus subtilis and the human pathogenStreptococcus pneumoniae promote segregation of replicatedchromosomes and are recruited to parS sites at the orig<strong>in</strong> of replication bythe sequence specific DNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> ParB. This target<strong>in</strong>gmechanism seems to be conserved at least among gram-positive bacteriaand can be reconstituted <strong>in</strong> a heterologous expression system.OTP126Bacterial cytoskeletal element MreB forms dynamic act<strong>in</strong>-likefilaments <strong>in</strong> live cells and <strong>in</strong> vitroH.J. Defeu Soufo* 1 , C. Reimold 1 , H. Breddermann 1 , P. von Ohlshausen 2 ,A. Rohrbach 2 , P.L. Graumann 11 Albert-Ludwigs-Universität, Institut für Mikrobiologie , Freiburg, Germany2 Albert-Ludwigs-Universität, Institut für Mikrosystemtechnik, Freiburg,GermanyMreB prote<strong>in</strong> is an essential component of the cell shape generationsystem and additionally affects many subcellular position<strong>in</strong>g processes <strong>in</strong>bacteria. MreB has a three dimensional structure that is highly similar tothat of act<strong>in</strong> and forms filamentous structures <strong>in</strong> vitro. However, it has stillbeen a matter of dispute if act<strong>in</strong> and MreB have arisen through divergentor convergent evolution. It has recently been proposed that the activity ofMreB does not depend on the formation of extended filaments and that theprote<strong>in</strong> forms patch like structures rather than dynamic filaments <strong>in</strong> vivo.Us<strong>in</strong>g super resolution microscopy (S-TIRF) with a resolution of 100 nm,we provide evidence that MreB forms filaments <strong>in</strong> live Bacillus subtilisbacteria, which can extend at a rate of 65 nm/s and mostly have a length <strong>in</strong>between half and full turns around the cell periphery. Filaments display asurpris<strong>in</strong>gly variable degree of orientations, from circumferential tohelical, can fuse and split, and show extension dynamics that are affectedthrough a po<strong>in</strong>t mutation with<strong>in</strong> the ATPase motif. FRAP experimentsreveal very fast exchange rates consistent with rapid filament turnover.MreB and its three paralogs Mbl and MreBH also form polymers <strong>in</strong> vitro,dependent on ATP and magnesium. Our results demonstrate that MreBforms extended filamentous structures that are able to confer long range<strong>in</strong>teractions with membrane prote<strong>in</strong>s, which can be circumferential as wellas helical. Given that any polymer has an <strong>in</strong>herent bend<strong>in</strong>g stiffness, andthat MreB filaments are mostly longer than a half turn around the cellperiphery, filaments may exert a mechanical force aga<strong>in</strong>st the membranethat can lead to local transfer of energy aga<strong>in</strong>st the wall, possiblyfacilitat<strong>in</strong>g the <strong>in</strong>corporation of new peptidoglycan strands <strong>in</strong>to the exist<strong>in</strong>gwall polymer. Our data further support the notion that MreB and act<strong>in</strong> havehad a common ancestor whose function was already based on dynamicfilament extension/retraction reactions.OTP127Analysis of the complete genome of Janth<strong>in</strong>obacterium sp. HH01reveals a homoser<strong>in</strong>e lactone-<strong>in</strong>dependent regulation of theviolace<strong>in</strong> biosynthesis genesC. Hornung* 1 , A. Poehle<strong>in</strong> 2 , M. Schmidt 1 , M. Blokesch 3 , R. Daniel 2 ,W. Streit 11 Universität Hamburg, Biozentrum Kle<strong>in</strong> Flottbek, Mikrobiologie undBiotechnologie, Hamburg, Germany2 Georg-August-University of Göttigen, Gött<strong>in</strong>gen Genomics Laboratory,Institute of Microbiology and Genetics, Gött<strong>in</strong>gen, Germany3 Polytechnique Fédérale de Lausanne (EPFL), Laboratory of MolecularMicrobiology, Global Health Institute, Lausanne, Switzerland, SwitzerlandThe gram-negative -proteobacterium Janth<strong>in</strong>obacterium sp. HH01 wasrecently isolated from an aquatic environment. Janth<strong>in</strong>obacteria formbeneficial biofilms on the sk<strong>in</strong> of amphibia and are <strong>in</strong>volved <strong>in</strong> prevent<strong>in</strong>gfungal growth [1,2]. HH01 grows well <strong>in</strong> a wide temperature rangebetween 4 and 17 °C and produces violace<strong>in</strong> <strong>in</strong> stationary growth phase.BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!