20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

205constructed and overexpressed <strong>in</strong> E.coli cells. By pull-down analysis it wasestablished that deletion of already 6 C-term<strong>in</strong>al am<strong>in</strong>o acids abrogate GSb<strong>in</strong>d<strong>in</strong>g. The region between 20 and 35 am<strong>in</strong>o acids from the C-term<strong>in</strong>us isrequired for GlnK <strong>in</strong>teraction as well as for proteolysis of TnrA. Thesedata confirm that the <strong>in</strong>teraction of GS or GlnK with TnrA protects it fromdegradation. Alternatively, if ammonium was added to nitrogen starvedcells, TnrA dissociates from GlnK and b<strong>in</strong>ds to GS. Interaction of TnrAwith GS <strong>in</strong>activates the transcription factor. Conversely, TnrA <strong>in</strong>hibits theGS activity; TnrA represses <strong>in</strong> vitro the biosynthetic activity of GS,<strong>in</strong>dependently of the presence of AMP or glutam<strong>in</strong>e.This work was supported by the Russian-German program ‘MichailLomonosov’ A/10/73337 and A/10/74537.RSP050Cross-<strong>in</strong>teractions between two-component signal transductionsystems <strong>in</strong> E. coliE. Sommer*, A. Müller, V. SourjikUniversität Heidelberg, Zentrum für Molekulare Biologie Heidelberg,Heidelberg, GermanyMicroorganisms commonly use ‘two-component’ signal<strong>in</strong>g systems forsens<strong>in</strong>g environmental conditions. Prototypical two-component systemsare comprised of a sensory histid<strong>in</strong>e k<strong>in</strong>ase and a response regulatorprote<strong>in</strong> that is phosphorylated by the k<strong>in</strong>ase. The regulator typically acts asa transcription factor regulat<strong>in</strong>g gene expression. Apart from a few studiesperformed <strong>in</strong> vitro, the signal<strong>in</strong>g properties of a whole prokaryotic twocomponentnetwork <strong>in</strong> vivo rema<strong>in</strong>s largely unclear. We use a system levelapproach to characterize the <strong>in</strong>teractions between sensors, regulators andpromotors <strong>in</strong> the model bacterium Escherichia coli on different levels,us<strong>in</strong>g <strong>in</strong> vivo fluorescence resonance energy transfer (FRET) microscopyand flow cytometry. We measure a set of labelled sensor dimers andsensor-regulator comb<strong>in</strong>ations at physiological expression levels anddescribe quantitatively their <strong>in</strong>teraction strength and k<strong>in</strong>etics us<strong>in</strong>g FRET.Additionally, we identify mixed complexes between different sensors andnon-cognate sensor-regulator pairs exhibit<strong>in</strong>g <strong>in</strong> vivo <strong>in</strong>teractions. Thesef<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate possible <strong>in</strong>terconnections between different signal<strong>in</strong>gpathways. We demonstrate that <strong>in</strong> some of the cases <strong>in</strong>teractions aresensitive to specific stimulation, suggest<strong>in</strong>g that changes <strong>in</strong> prote<strong>in</strong>arrangement play a role <strong>in</strong> signal process<strong>in</strong>g. Us<strong>in</strong>g flow cytometry andtranscriptional reporters, we further observe several cases where sensorshave an effect on non-cognate promotor regulation, <strong>in</strong>dicat<strong>in</strong>g thephysiological relevance of the identified <strong>in</strong>terconnections betweendifferent signal transduction pathways. Our results should help to establishan <strong>in</strong>tegral picture of cell signall<strong>in</strong>g, which is of general importance fors<strong>in</strong>gle cellular organisms.RSP051SyR1 - a sRNA regulat<strong>in</strong>g photosynthesis <strong>in</strong> cyanobacteria*N. Schürgers 1 , E. Kutchm<strong>in</strong>a 1 , D. Dienst 2 , J. Georg 3 , W. Hess 3 , A. Wilde 11 JLU Giessen, Molekular & Mikrobiologie, AG Wilde, Giessen, Germany2 Humboldt Universität, Genetics, Berl<strong>in</strong>, Germany3 Universität Freiburg, Genetics, Freiburg, GermanyPost-transcriptional gene regulation by trans encoded small RNAs (sRNA)emerges as an regulatory feature common to most prokaryotes. Recently,biocomputational prediction [1], comparative transcriptional analysis [2]and high throughput pyrosequenc<strong>in</strong>g of Synechocystis sp. PCC6803 [3]revealed the existence of many new sRNAs <strong>in</strong> this cyanobacterial modelorganism. One of these candidates is the strongly accumulat<strong>in</strong>g sRNASyR1 (Synechocystis ncRNA 1), which is a 130nt long transcript from the<strong>in</strong>tergenic region between the fabX and hoH genes. More detailed<strong>in</strong>vestigation on SyR1 showed that this sRNA is upregulated under highlightstress and CO2 depletion [2] and that a stra<strong>in</strong> overexpress<strong>in</strong>g Syr1exhibits a bleach<strong>in</strong>g-phenotype lack<strong>in</strong>g photosynthetic pigments. Ahomology search revealed SyR1 candidates <strong>in</strong> other cyanobacteria while abio<strong>in</strong>formatical target prediction implies that the predom<strong>in</strong>ant <strong>in</strong>teractionsite, which is also the most conserved sequence element of SyR1,potentially b<strong>in</strong>ds to the transcripts of photosynthesis genes. Moreover, gelmobility shift assays provide evidence for a direct <strong>in</strong>teraction betweenSyR1 and psaL and ongo<strong>in</strong>g mutational analysis of the putative SyR1b<strong>in</strong>d<strong>in</strong>g site aims to verify the post-transcriptional regulation of this targetgene. Furthermore, prelim<strong>in</strong>ary results <strong>in</strong>dicate that long-term SyR1overexpression leads to a down-regulation of genes <strong>in</strong>volved <strong>in</strong> the highaff<strong>in</strong>ityuptake of <strong>in</strong>organic carbon (Ci) while the aeration of cultures with5% CO2 quickly abolishes SyR1 accumulation <strong>in</strong> the overexpression stra<strong>in</strong>and complements the bleach<strong>in</strong>g-phenotype. For these f<strong>in</strong>d<strong>in</strong>gs wespeculate that SyR1-dependent gene regulation affects photosystembiosynthesis and homeostasis and possibly <strong>in</strong>tegrates light and Cisignal<strong>in</strong>gpathways.[1] Voss B, Georg J, Schön V, Ude S, Hess WR (2009) Biocomputational prediction of non-cod<strong>in</strong>gRNAs <strong>in</strong> model cyanobacteria. BMC Genomics 10:123[2] Georg J, Voss B, Scholz I, Mitschke J, Wilde A, Hess WR (2009) Evidence for a major role ofantisense RNAs <strong>in</strong> cyanobacterial gene regulation. Mol Syst Biol 5:305.[3] Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voß B, Steglich C, Wilde A,Vogel J,Hess WR (2011) An experimentally anchored map of transcriptional start sites <strong>in</strong> the modelcyanobacterium Synechocystis sp. PCC6803. PNAS 1015154108v1-201015154RSP052Utilization of metabolic regulation for the production ofheterologous prote<strong>in</strong>s <strong>in</strong> Burkholderia glumaeA. Knapp* 1 , A. Pelzer 1 , R. Hahn 1 , F. Rosenau 2 , S. Wilhelm 1 , K.-E. Jaeger 11 Institute for Molecular Enzyme Technology, He<strong>in</strong>rich-He<strong>in</strong>e-UniversityDuesseldorf, Juelich, Germany2 Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, GermanyBurkholderia glumae is a Gram-negative proteobacteria. Although <strong>in</strong>itiallyproposed to be part of the Pseudomonas genus, this stra<strong>in</strong> was transferredalong with others like Pseudomonas cepacia and Pseudomonas gladioli tothe new genus Burkholderia. S<strong>in</strong>ce the rice pathogen B. glumae is nonhumanpathogenic and therefore classified as S1-organism, it could beused as model organism for related pathogenic bacteria like Pseudomonasaerug<strong>in</strong>osa.Due to its relevancy for agriculture, most of the scientific <strong>in</strong>vestigationswith regard to B. glumae focused on the mechanisms the ricepathogenicityis based on. Besides, B. glumae has an <strong>in</strong>terest<strong>in</strong>g <strong>in</strong>dustrialapplication range: The BASF company has developed B. glumae byclassical stra<strong>in</strong> improvement as a lipase over-production stra<strong>in</strong> 1,2 . Thus,there is the possibility to produce large amounts of functional enzyme andwe want to ga<strong>in</strong> access to this production capacity for heterologous prote<strong>in</strong>production by establish<strong>in</strong>g B. glumae as a novel expression stra<strong>in</strong>.Expression systems based on the T7-Polymerase are able to produce largeamounts of prote<strong>in</strong>s, for example <strong>in</strong> E. coli, but lead <strong>in</strong> some cases to<strong>in</strong>active enzymes accumulated <strong>in</strong> <strong>in</strong>clusion bodies. Here, posttranslationalmodification, fold<strong>in</strong>g, and secretion of prote<strong>in</strong>s may be crucial steps <strong>in</strong>successful production of prote<strong>in</strong>s and active enzymes. We want to avoidthese problems by <strong>in</strong>duc<strong>in</strong>g the T7-Polymerase expression at a time B.glumae is able to handle large amounts of produced prote<strong>in</strong>s, like itslipase. Therefore, we have created an expression stra<strong>in</strong> which exhibits alipase promoter controlled T7-Polymerase gene. The transcription of genesdownstream this lipase promoter can be <strong>in</strong>duced for example by olive oil 3 .S<strong>in</strong>ce we have shown that the lipase promoter is controllable and <strong>in</strong>ducibleby the choice of additional carbon sources <strong>in</strong> the culture medium, we havealso constructed a vector-based expression system for B. glumaeconta<strong>in</strong><strong>in</strong>g a lipase promoter. The production capacity and prevention of<strong>in</strong>clusion bodies for difficult-to-express genes will be determ<strong>in</strong>ed <strong>in</strong> furtherstudies.1: Braatz, R., Kurth, R., Menkel-Conen, E., Rettenmaier, H., Friedrich, T. and Subkowski, T., WO9300924 A1 (23.06.92). Chem. Abstr. 118 (1993): 175893.2: Balkenhohl, F., Ditrich, K., Hauer, B. and Ladner, W. (1997). Optisch aktive Am<strong>in</strong>e durchLipase-katalysierte Methoxyacetylierung. J. Prakt. Chem. 339: 381-384.3: Boekema, B. K. H. L., Besel<strong>in</strong>, A., Breuer, M., Hauer, B., Koster, M., Rosenau, F., Jaeger, K.-E.and Tommassen, J. (2007). Hexadecane and Tween 80 stimulate lipase production <strong>in</strong> Burkholderiaglumae by different mechanisms. Appl. Environ. Microbiol. 73: 3838-3844RSP053An expression system for the W-conta<strong>in</strong><strong>in</strong>g class II benzoylcoenzymeA reductases <strong>in</strong> Geobacter metallireducensS. Huwiler*, J. Oberender, J. Kung, M. BollUniversity of Leipzig, Institut of Biochemistry, Leipzig, GermanyIn anaerobic bacteria most aromatic growth substrates are converted <strong>in</strong>tothe central <strong>in</strong>termediate benzoyl-coenzyme A (benzoyl-CoA). Benzoyl-CoA reductases (BCRs) dearomatize benzoyl-CoA to cyclohexa-1,5-diene-1-carboxyl-CoA (dienoyl-CoA). Obligately anaerobic bacteria such asGeobacter metallireducens employ class II benzoyl-CoA reductases. Theactive site components of this W-enzyme, BamBC, have recently beenisolated and characterized 1 . A genetic system compris<strong>in</strong>g a suitableexpression plasmid was established <strong>in</strong> Geobacter metallireducens thatenabled the active production of Strep-tagged BamB, which supposedlyconta<strong>in</strong>s tungsten. Surpris<strong>in</strong>gly, the electron transferr<strong>in</strong>g wild type BamCsubunit, conta<strong>in</strong><strong>in</strong>g 3 [4Fe-4S] clusters, was co-purified with Strep-taggedBamB <strong>in</strong>dicat<strong>in</strong>g a strong but reversible <strong>in</strong>teraction of the two subunits.The established system enables the efficient production and purification ofclass II benzoyl-CoA reductase subunits and may enable expression ofother W-/metallo enzymes from obligately anaerobic Deltaproteobacteria.(1) Kung JW, Löffler C, Dörner K, He<strong>in</strong>tz D, Gallien S, Van Dorsselaer A, Friedrich T, Boll M(2009) Identification and characterization of the tungsten-conta<strong>in</strong><strong>in</strong>g class of benzoyl-coenzyme Areductases. Proc Natl Acac Sci U.S.A.106:17687-17692.RSP054Insight <strong>in</strong>to the (de)phosphorylation of the phosphotransferaseprote<strong>in</strong>s HPr and Crh <strong>in</strong> Bacillus subtilisC. Zschiedrich*, J. Landmann, J. Stülke, B. GörkeGeorg-August Universität Gött<strong>in</strong>gen, Department of GeneralMicrobiology, Gött<strong>in</strong>gen, GermanyIn Bacillus subtilis uptake and utilization of different carbon sources aretightly regulated by carbon catabolite repression (CCR) (1). The globalplayers <strong>in</strong>volved <strong>in</strong> CCR are HPr and the HPr k<strong>in</strong>ase/phosphorylase. Uponphosphorylation of HPr at Ser~46, CCR is mediated by the CcpA-HPr-BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!