20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

97enzyme product proved unequivocally ChaDH as NAD-dependentchanoclav<strong>in</strong>e-I dehydrogenase like its homologue FgaDH.[5][1.] C. Wallwey, S.-M. Li, Nat. Prod. Rep. 2011, 28, 496-510.[2.] C. L. Schardl, D. G. Panaccione, P. Tudzynski, The Alkaloids, Chem. Biol. 2006, 63, 45-86.[3.] C. Wallwey, M. Matuschek, X.-L. Xie, S.-M. Li, Org. Biomol. Chem. 2010, 8, 3500-3508.[4.] M. Matuschek, C. Wallwey, X.-L. Xie, S.-M. Li, Org. Biomol. Chem. 2011, 9, 4328-4335.[5.] C. Wallwey, M. Matuschek, S.-M. Li, Arch. Microbiol. 2010, 192, 127-134.MEP021The <strong>in</strong>terlock<strong>in</strong>g between primary and secondary metabolism<strong>in</strong> the biosynthesis of the glycopeptide antibiotic Balhimyc<strong>in</strong>V. Goldf<strong>in</strong>ger*, M. Spohn, W. Wohlleben, E. StegmannEberhard-Karls-University, Microbiology/Biotechnology, Tüb<strong>in</strong>gen, GermanyBalhimyc<strong>in</strong> is a glycopeptide antibiotic of vancomyc<strong>in</strong>-type. Suchantibiotics are used for the treatment of serious <strong>in</strong>fections caused by multiresistantgram-positive bacteria. To antagonize the consistently <strong>in</strong>creas<strong>in</strong>gnumber of the antibiotic resistance, it is important to understand thebiosynthetic pathway of antibiotic production <strong>in</strong> details to optimize itsproduction and advance its impact.As glycopeptide balhimyc<strong>in</strong> consists of a glycosylated heptapeptidebackbone. Five of these seven am<strong>in</strong>o acids derive from the shikimatepathway. The analysis of the gene cluster showed that <strong>in</strong> addition to thegenes encod<strong>in</strong>g the biosynthetic enzymes, the balhimyc<strong>in</strong> gene cluster<strong>in</strong>cludes two genes (dahp, pdh) which encode the homologous keyenzymes of the shikimate pathway. The previous research showed that thedeletion and over expression of these additional genes <strong>in</strong>A.balhimyc<strong>in</strong>aaffects the antibiotic production. The over expressionofdahpfrom the antibiotic gene cluster causes <strong>in</strong>creased production ofbalhimyc<strong>in</strong>. The deletion of the same gene causes the decreased antibioticproduction. In contrast the over expression ofpdhfrom the balhimyc<strong>in</strong>biosynthetic gene cluster leads to the lower antibiotic production and itsdeletion does not show any remarkable effects consider<strong>in</strong>g the antibioticproduction. This fact could be expla<strong>in</strong>ed by cross-regulation betweentyros<strong>in</strong>e and phenyalan<strong>in</strong>e biosynthetic pathway which was describedforA. methanolica. ByA. methanolicatyros<strong>in</strong>e functions as an activator forprephenate dehydratase (Pdt) which catalyzes the first step reaction on thebranch<strong>in</strong>g po<strong>in</strong>t from prephenate direction phenylalan<strong>in</strong>e. Otherwise Pdt isfeedback <strong>in</strong>hibited by phenylalan<strong>in</strong>e. The overexpression of Pdt <strong>in</strong>A.balhimyc<strong>in</strong>a<strong>in</strong> the current work resulted <strong>in</strong> the <strong>in</strong>creased antibioticproduction what would expla<strong>in</strong> the results of the previous research andconfirm the similar regulation mechanism byA. balhimyc<strong>in</strong>aandA.methanolicaon the branch<strong>in</strong>g po<strong>in</strong>t between tyros<strong>in</strong>e and phenyalan<strong>in</strong>ebiosynthesis.The other disputable question <strong>in</strong> the tyros<strong>in</strong>e biosynthesis is the substratespecificity of Pdh. In-silico analysis let to assume that Streptomyce’s Pdhis L-arogenate and not prephenate specific. The overexpression andpurification ofA. balhimyc<strong>in</strong>aPdh which was used <strong>in</strong> enzyme assayshowed the prephenate specificity. The proof for L-arogenate specificity ofPdh fromA. balhimyc<strong>in</strong>a<strong>in</strong> an enzymassay has to be done.Thykaer J,Nielsen J,Wohlleben W,Weber T,Gutknecht M,Lantz AE,Stegmann E.,MetabEng.,2010,May 25, [Epub ahead of pr<strong>in</strong>t]Jian Song, Carol A. Bonner, Murray Wol<strong>in</strong>sky, Roy A. Jensen,BMC Biol.,2005,e pub 3:13Carol A. Bonner, Terrence Disz, Kaitlyn Hwang, Jian Song, Veronika Vonste<strong>in</strong>, Ross Overbeek,Roy A. Jensen,Microbiol Mol Biol Rev.,2008,p. 13-53David H. Calhoun, Duane L. Pierson, Roy A. Jensen,J Bacteriol.,1973,p.241-251MEP022Identification of a phenaz<strong>in</strong>e gene cluster <strong>in</strong> Dermacoccus sp.MT1.2, isolated from a Mariana Trench sedimentM. Wagner* 1 , W. Abdel-Mageed 2 , M. Jaspars 2 , O. Saleh 3 , L. Heide 3 ,W. Pathom-aree 4 , M. Goodfellow 4 , H.-P. Fiedler 11 Universität Tüb<strong>in</strong>gen, IMIT, Tüb<strong>in</strong>gen, Germany2 University of Aberdeen, Department of Chemistry, Aberdeen, United K<strong>in</strong>gdom3 Universität Tüb<strong>in</strong>gen, Pharmazeutische Biologie, Tüb<strong>in</strong>gen, Germany4 University of Newcastle, School of Biology, Newcastle, United K<strong>in</strong>gdomA sediment sample was taken from the Mariana Trench at the third deepestpo<strong>in</strong>t of earth, the Challenger Deep (10,898 m), <strong>in</strong> the western PacificOcean (11°19‘911“ N; 142°12‘372“ E) on 21 May 1998 by the remotelyoperated submersible Kaiko, us<strong>in</strong>g sterilized mud samplers dur<strong>in</strong>g divenumber 74. The sediment sample (approximately 2 ml) was stored at -20°C until analyzed for act<strong>in</strong>omycetes. 38 act<strong>in</strong>omycetes were isolatedus<strong>in</strong>g mar<strong>in</strong>e and raff<strong>in</strong>ose-histid<strong>in</strong>e agar, and were characterized byphylogenetic analysis on 16S rRNA gene sequenc<strong>in</strong>g [1]. The stra<strong>in</strong>s wereassigned to the genera Dermacoccus (19 isolates), Kocuria (1 isolate),Micromonospora (1 isolate), Streptomyces (5 isolates), Tsukamurella (11isolates) and Williamsia (1 isolate).The Dermacoccus isolates showed unusual secondary metabolite profilesdeterm<strong>in</strong>ed by HPLC-DAD analysis. Stra<strong>in</strong>s MT1.1 and MT1.2 exhibitedthe highest productivity and were therefore selected for fermentationstudies us<strong>in</strong>g ISP2 and 410 media, respectively. This led to the productionof seven novel phenaz<strong>in</strong>e metabolites, the dermacoz<strong>in</strong>es. Structureelucidation was performed by 13 C and 1 H NMR spectroscopic methods,electronic structure calculations and CD spectroscopy. The biologicaleffects of the dermacoz<strong>in</strong>es compromised antitumor, antiparasitic andantioxidative activities [2].We show the identification of the phenaz<strong>in</strong>e gene cluster <strong>in</strong> Dermacoccussp. MT1.2. A genome library of stra<strong>in</strong> MT1.2 was screened by colonyPCR. On cosmid MW_A9 a possible gene cluster was found that conta<strong>in</strong>edthe essential phenaz<strong>in</strong>e core genes and some more genes <strong>in</strong>volved <strong>in</strong> themodification of the <strong>in</strong>termediate product phenaz<strong>in</strong>e-1,6-dicarboxylic acid.We also show a proposed biosynthesis of dermacoz<strong>in</strong>es with respect to thepathway already known from other phenaz<strong>in</strong>e produc<strong>in</strong>g bacteria.Pathom-aree, W., Stach, J.E.M., Ward, A.C., Horikoshi, K., Bull, A.T. & Goodfellow, M.,Extremophiles, 2006, 10, 181-189.Abdel-Mageed, W.M., Milne, B.F., Wagner, M., Schumacher, M., Sandor, P., Pathom-aree, W.,Goodfellow, M., Bull, A.T., Horikoshi, K., Ebel, R., Diedrich, M., Fiedler, H.-P. and Jaspars, M.,Org. Biomol. Chem., 2010, 8, 2352-2362.MEP023On the way to unravel a novel biosynthetic pathway for theunique volatile 'sodorifen' of Serratia odoriferaT. Weise* 1 , M. Kai 1,2 , S.H. von Reuß 3,4 , W. Francke 4 , B. Piechulla 11 University of Rostock, Institute of Biological Sciences, Rostock, Germany2 Max Planck Institute for Chemical Ecology, Jena, Germany3 Cornell University, Boyce Thompson Institute, Ithaca, United States4 University of Hamburg, Organic Chemistry, Hamburg, GermanyBacteria are a profound source of secondary metabolites, e.g. antibioticsand tox<strong>in</strong>s (1). Unexpectedly large and diverse is also the spectrum ofvolatile secondary compounds. Octamethyl bicycle (3.2.1) octadiene(`sodorifen´) a volatile secondary metabolite of Serratia odorifera 4Rx13was recently found and structurally elucidated (2). `Sodorifen´ (C 16H 26) iscomposed of a new and unusual type of carbon skeleton. Each carbon atomof the bicyclic structure is methylated resp. methylenated. As the structureis new to science also the biosynthesis of this compound is still a mystery.A multi strategy approach <strong>in</strong>clud<strong>in</strong>g physiological experiments, genome,proteome, and metabolome analysis is presently conducted to unravel thebiosynthesis and regulation of `sodorifen´. Feed<strong>in</strong>g experiments withdifferent carbon sources, e.g. am<strong>in</strong>o acids, organic acids and sugars, wereperformed. The carbon compounds, which resulted <strong>in</strong> highest `sodorifen´emission, were subsequently used <strong>in</strong> [ 13 C] isotope feed<strong>in</strong>g experiments and<strong>in</strong>corporation <strong>in</strong>to `sodorifen´ was analysed by GC/MS and NMR. Besidethe results of the feed<strong>in</strong>g experiments we will present the accompaniedproteome and genome approaches.Acknowledgement: We thank our collaborators G. Gottschalk, R. Daniel, A. Thürmer, J. Voss, R.Lehmann (University of Gött<strong>in</strong>gen, D), M. Glocker and S. Mikkat (University of Rostock, D).1 Wenke K., Kai M., Piechulla B. (2010). Planta 231: 499-5062 Von Reuß S., Kai M., Piechulla B., Francke W. (2009). Angewandte Chemie 122: 2053-2054MEP024New elaiomyc<strong>in</strong>s produced by Streptomyces stra<strong>in</strong>sN. Manderscheid* 1 , S. Helaly 2 , A. Kulik 1 , B.-Y. Kim 3 , M. Goodfellow 3 ,J. Wiese 4 , J.F. Imhoff 4 , R.D. Süssmuth 2 , H.-P. Fiedler 11 Universität Tüb<strong>in</strong>gen, IMIT, Tüb<strong>in</strong>gen, Germany2 TU Berl<strong>in</strong>, Institut für Chemie, Berl<strong>in</strong>, Germany3 University of Newcastle, School of Biology, Newcastle, United K<strong>in</strong>gdom4 Leibniz Institut für Meereswissenschaften, Kieler Wirkstoffzentrum, Kiel,GermanyIn our search for novel secondary metabolites by HPLC-DAD screen<strong>in</strong>g,stra<strong>in</strong>s Streptomyces sp. BK 190 and Streptomyces sp. Tü 6399 weresubjected to a closer scrut<strong>in</strong>y because of <strong>in</strong>terest<strong>in</strong>g peaks <strong>in</strong> their HPLCprofile of a culture filtrate extract. Stra<strong>in</strong> BK 190 was isolated from a haymeadow soil taken from Cockle Park Experimental Farm <strong>in</strong>Northumberland, UK. Stra<strong>in</strong> Tü 6399 was isolated from a rhizospheric soilcollected <strong>in</strong> a spruce stand located <strong>in</strong> the Rammert Forest near Tüb<strong>in</strong>gen,Germany. Both stra<strong>in</strong>s were assigned to the genus Streptomyces by theirmorphological and chemotaxonomic features and by the sequence of thealmost complete 16S rRNA gene.It was shown by Kim et al. that stra<strong>in</strong> BK 190 produces two novelalkylhydrazide antibiotics, named elaiomyc<strong>in</strong> B and C, which showed<strong>in</strong>hibitory activities aga<strong>in</strong>st Staphylococcus lentus DSM 6672 and towardsthe enzymes acetylchol<strong>in</strong>esterase and phosphodiesterase [1].Stra<strong>in</strong> Tü 6399 produced two novel azoxy antibiotics, named elaiomyc<strong>in</strong> Dand E, which showed an <strong>in</strong>hibitory activity aga<strong>in</strong>st Bacillus subtilis DSM10, Staphylococcus lentus DSM 6672, Xanthomonas campestris DSM1706 and a slight activity towards the enzyme phosphodiesterase 4;elaiomyc<strong>in</strong> E showed a slight activity aga<strong>in</strong>st acetylchol<strong>in</strong>esterase.The new compounds are similar <strong>in</strong> structure to elaiomyc<strong>in</strong>, which was firstdescribed by Stevens et al. [2] conta<strong>in</strong><strong>in</strong>g a unique aliphatic ,unsaturatedazoxy group. Elaiomyc<strong>in</strong> exhibits an unusual <strong>in</strong>hibitoryactivity aga<strong>in</strong>st Mycobacterium tuberculosis.1 Kim, B.-Y., Willbold, S., Kulik, A., Helaly, S. E., Z<strong>in</strong>ecker, H., Wiese, J., Imhoff, J. F.,Goodfellow, M., Süssmuth, R. D. & Fiedler, H.-P. Elaiomyc<strong>in</strong>s B and C, novel alkylhydrazidesproduced by Streptomyces sp. BK 190. J. Antibiot. 64, 595-597 (2011).2 Haskell, T. H., Ryder, A. & Bartz, Q. R. Elaiomyc<strong>in</strong>, a new tuberculostatic antibiotic; isolationand chemical characterization. Antibiot. Chemother. 4, 141-144 (1954).BIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!