20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

183Expression of sulfatases was studied with R. baltica SH1 T grown ondifferent sulfated polysaccharides. Transcriptome-wide gene expressionstudies apply<strong>in</strong>g a well-established microarray platform [3, 4] revealed astrong functional l<strong>in</strong>k between tested substrates and active sulfatases.Besides, further potential functions mediated by sulfatases could bededuced from the expression profiles. The transcriptomic approach wascomb<strong>in</strong>ed with a phylogenetic assessment of sulfatase genes found <strong>in</strong> eightdraft genomes of cultured stra<strong>in</strong>s represent<strong>in</strong>g five different species of thegenusRhodopirellula [5, 6]. More than 1100 sulfatase sequences revealed172 clusters of orthologous and (rare) paralogous genes. Phylogeneticanalysis of theRhodopirellula sulfatases resulted <strong>in</strong> 17 major groups, ofwhich only six <strong>in</strong>cluded sulfatases of known function as derived from theUniProtKB database. Consider<strong>in</strong>g potential applications <strong>in</strong> medic<strong>in</strong>e andbiotechnology, sulfatases can be considered a promis<strong>in</strong>g hotspot <strong>in</strong> futureresearch relat<strong>in</strong>g to the physiologically diverse PVC superphylum.1 . Glöckner FO, et al. (2003) PNAS100:8298-83032. Thrash JC, Cho J-C, Verg<strong>in</strong> KL, Morris RM, Giovannoni SJ (2010)J. Bacteriol.192:2938-29393. Wecker P, Klockow C, Ellrott A, Quast C, Langhammer P, Harder J, Gloeckner FO (2009)BMCGenomics10:4104. Wecker P, Klockow C, Schueler M, Dab<strong>in</strong> J, Michel G, Gloeckner FO (2010)Microb. Biotech.3:583-5945. W<strong>in</strong>kelmann N, Harder J (2009)J. Microbiol. Meth.77:276-2846. W<strong>in</strong>kelmann N, et al. (2010) Appl. Environ. Microbiol. 76: 776-785PSP032Solvent tolerance <strong>in</strong> Pseudomonas sp. stra<strong>in</strong> VLB120- Biofilms vs. Planktonic Cells-K. Schmutzler*, J. Volmer, B. Halan, K. Buehler, A. SchmidTU Dortmund University, Laboratory of Chemical Biotechnology,Dortmund, GermanyOne of the key bottlenecks <strong>in</strong> biocatalysis <strong>in</strong>volv<strong>in</strong>g toxic and / or organicsubstances is the stability of the chosen host organism. In the recent yearsa couple of stra<strong>in</strong>s belong<strong>in</strong>g to the Pseudomonas genus have beendescribed show<strong>in</strong>g specific properties <strong>in</strong>terest<strong>in</strong>g for the conversion oftoxic reactants [1], such as high solvent tolerance, metabolic versatility,and a high metabolic capacity for redox cofactor regeneration [2]. Another<strong>in</strong>terest<strong>in</strong>g feature of several Pseudomonas species is their ability to formbiofilms. Solvent tolerance <strong>in</strong> planktonic cells is highly related to theexistence of RND efflux pumps, especially TtgGHI <strong>in</strong> P. putida DOT-T1Eand SrpABC <strong>in</strong> P. putida S12 [3-4]. The tolerance phenomena <strong>in</strong> biofilmgrow<strong>in</strong>g cells are <strong>in</strong> part attributed to the existence of extracellularpolymeric substances (EPS). EPS are excreted by biofilm grow<strong>in</strong>gorganisms and form a sticky frame work giv<strong>in</strong>g the biofilm its threedimensional structure [5].Here, we compare different mechanisms of Pseudomonas sp. stra<strong>in</strong>VLB120 responsible for the excellent solvent tolerance of this stra<strong>in</strong> [6-7]<strong>in</strong> planktonic grow<strong>in</strong>g cultures as well as <strong>in</strong> biofilm grow<strong>in</strong>g cells with theaim to obta<strong>in</strong> a stable solvent tolerant phenotype for redox biocatalysiswith toxic reactants.Regard<strong>in</strong>g planktonic cells, different adaptation procedures with differentorganic solvents (e.g. toluene, 1-octanol) were tested and the result<strong>in</strong>gsolvent tolerant phenotypes have been characterized and compared to nonsolventtolerant phenotypes. In a second step, genetic eng<strong>in</strong>eer<strong>in</strong>g wasused to create knock-out mutants to overcome critical aspects of adaptedsolvent tolerant phenotypes such as poor reproducibility, tediousadaptation procedures, and low stability.Biofilms of Pseudomonas sp. stra<strong>in</strong> VLB120 have been cultivated <strong>in</strong> aspecifically designed flow-cell and the <strong>in</strong>fluence of the solvent styrene was<strong>in</strong>vestigated. It became obvious, that although cells suffered severedamage upon the solvent shock, the biofilm organisms recovered andadapted to high concentrations of styrene [8]. Concomitantly the excretionof EPS was boosted upon the addition of this organic solvent.[1] Ramos, J.L.et al., 2002, Annu Rev Microbiol.56: p. 743-68.[2] Blank, L.M.et al., 2008, Febs J.275(20): p. 5173-5190.[3] Rojas, A.et al., 2001, J Bacteriol.183(13): p. 3967-73.[4] Kieboom, J.et al., 1998, J Biol Chem.273(1): p. 85-91.[5] Rosche, B.et al., 2009, Trends Biotechnol.27(11): p. 636-43.[6] Halan, B.et al., 2010, Biotechnol Bioeng.106(4): p. 516-527.[7] Park, J.B.et al., 2007, Biotechnol Bioeng.98(6): p. 1219-29.[8] Halan, B.et al., 2011, Appl Environ Microbiol.77(5): p. 1563-1571.PSP033The novel subtilase SprP <strong>in</strong>fluences the lifestyle ofPseudomonas aerug<strong>in</strong>osaA. Pelzer* 1 , M. Lasch<strong>in</strong>ski 1 , F. Rosenau 2 , K.-E. Jaeger 1 , S. Wilhelm 11 Institute for Molecular Enzyme Technology, He<strong>in</strong>rich-He<strong>in</strong>e-UniversityDuesseldorf, Juelich, Germany2 Institute of Pharmaceutical Biotechnology, Ulm University, Ulm,GermanyP. aerug<strong>in</strong>osa is a very undemand<strong>in</strong>g organism that is ubiquitouslydistributed. The bacterium can be found <strong>in</strong> wet or humid surround<strong>in</strong>gs,rang<strong>in</strong>g from soil to human and produces a huge variety of extracellularprote<strong>in</strong>s. Hence, there exists a big potential for enzymes with suitableproperties for biotechnological application. Several proteases belong to thearsenal of secreted enzymes. Some of these proteases like Elastase andProtease IV are well characterized but others exist of which noth<strong>in</strong>g isknown so far (Hoge et al., 2010). Proteases <strong>in</strong> general are highly relevantfor technical enzyme applications. Subtilases for example are typicaldetergent proteases and are def<strong>in</strong>ed as ser<strong>in</strong>e proteases that belong to thepeptidase_S8 family. These subtilases are encoded as preproenzymescarry<strong>in</strong>g a signal peptide which drives their translocation through thecytoplasmic membrane and a propeptide act<strong>in</strong>g as a fold<strong>in</strong>g mediatorrequired to give the protease its f<strong>in</strong>al native conformation.By homology, we have identified the open read<strong>in</strong>g frame PA1242 <strong>in</strong> thegenome sequence of P. aerug<strong>in</strong>osa PAO1 encod<strong>in</strong>g a so far hypotheticalprote<strong>in</strong> as a putative member of the E-H-S family of subtilases. The geneproduct of PA1242 (sprP) conta<strong>in</strong>s a predicted signal sequence and apeptidase S8 doma<strong>in</strong>. Sequence analysis revealed the presence of anadditional element <strong>in</strong> the doma<strong>in</strong> organization of the protease. SprPcarries, beside its signal peptide and the S8 doma<strong>in</strong>, a doma<strong>in</strong> of unknownfunction (DUF) between both elements. After the identification of SprP,the gene was cloned, expressed <strong>in</strong> E. coli and the protease activity wasmeasured with established protease substrates.Often, proteases have an impact on different physiological processes likeprote<strong>in</strong> process<strong>in</strong>g and activation, secretion of other prote<strong>in</strong>s andpathogenicity of the host bacterium. A P. aerug<strong>in</strong>osa sprP-negative mutantwas constructed and different phenotypes were tested to elucidate thephysiological role of SprP.We were able to illustrate an em<strong>in</strong>ent role ofSprP by characterization of different phenotypes. Deletion of sprP causesan <strong>in</strong>creased biofilm formation and pyoverd<strong>in</strong>e biosynthesis, theaccumulation of cell aggregates dur<strong>in</strong>g growth, and a reduced growthunder anaerobic conditions.R. Hoge, A. Pelzer, F. Rosenau & S. Wilhelm, (2010) Weapons of a pathogen: Proteases and theirrole <strong>in</strong> virulence of Pseudomonas aerug<strong>in</strong>osa. In: Current Research, Technology and EducationTopics <strong>in</strong> Applied Microbiology and Microbial Biotechnology.A. M. Vilas (ed). Formatex ResearchCenter, pp. 383-395.PSP034Will not be presented!PSP035The structure of the NADH: ubiqu<strong>in</strong>one oxidoreductase fromVibrio chloeraeM. Casutt 1 , G. Vohl* 1 , T. Vorburger 2 , J. Steuber 2 , G. Fritz* 11 University of Freiburg, Department of Neuropathology, Freiburg, Germany2 University of Hohenheim, Department of Microbiology, Stuttgart, GermanyVibrio choleraema<strong>in</strong>ta<strong>in</strong>s a Na + -gradient across the cytoplasmic membrane(1,2). The generated sodium motive force is essential for substrate uptake,motility, pathogenicity, or efflux of antibiotics. This gradient is generatedby an NADH:ubiqu<strong>in</strong>one oxidoreductase (NQR) that is related to the RNFcomplex of archea and bacteria. NQR is an <strong>in</strong>tegral membrane prote<strong>in</strong>complex consist<strong>in</strong>g of six different subunits, NqrA-NqrF (3,4). In order toget <strong>in</strong>sights <strong>in</strong>to the redox-driven Na + -transport mechanism we haveisolated and crystallized the NQR of Vibrio cholerae (5). The crystals ofthe entire membrane complex diffract so far to 3.7 Angstrom and providefirst detailed structural <strong>in</strong>formation <strong>in</strong> this respiratory enzyme.(1) Türk K, Puhar A, Neese F, Bill E, Fritz G, Steuber J NADH oxidation by the Na + -translocat<strong>in</strong>gNADH:qu<strong>in</strong>one oxidoreductase from Vibrio cholerae: functional role of the NqrF subunit. (2004) JBiol Chem 279:21349-55(2) Juárez O, Morgan JE, Nilges MJ, Barquera B. Energy transduc<strong>in</strong>g redox steps of the Na+pump<strong>in</strong>gNADH:qu<strong>in</strong>one oxidoreductase fromVibrio cholerae. (2010) PNAS 107:12505-10.(3) Casutt MS, Nedielkov R, Wendelspiess S, Vossler S, Gerken U, Murai M, Miyoshi H, MöllerHM, Steuber J. Localization of Ubiqu<strong>in</strong>one-8 <strong>in</strong> the Na + -pump<strong>in</strong>g NADH:Qu<strong>in</strong>one Oxidoreductasefrom Vibrio cholerae. (2011) J Biol Chem 286:40075-82(4) Casutt MS, Huber T, Brunisholz R, Tao M, Fritz G, Steuber J. Localization and function of themembrane-bound riboflav<strong>in</strong> <strong>in</strong> the Na + -translocat<strong>in</strong>g NADH:qu<strong>in</strong>one oxidoreductase (Na + -NQR)fromVibrio cholerae. (2010) J Biol Chem 285:27088-99.(5) Casutt MS, Wendelspiess S, Steuber J, Fritz G. Crystallization of the Na + -translocat<strong>in</strong>gNADH:qu<strong>in</strong>one oxidoreductase from Vibrio cholerae. (2010) Acta Cryst F66:1677-9.PSP036Proteome assessment of an organohalide respir<strong>in</strong>g species:Dehalococcoides sp. CBDB1C.L. Schiffmann* 1 , L. Adrian 2 , M. von Bergen 1,3 , J. Seifert 11 UFZ - Helmholtz Centre for Environmental Research, Proteomics, Leipzig,Germany2 UFZ - Helmholtz Centre for Environmental Research, IsotopeBiogeochemistry, Leipzig, Germany3 UFZ - Helmholtz Centre for Environmental Research, Metabolomics, Leipzig,GermanyChlor<strong>in</strong>ated hydrocarbons that were released <strong>in</strong>to the environment are dueto their toxic and cancerogenic potential a threat to nature and humanhealth. The ability of anaerobic bacteria belong<strong>in</strong>g to Dehalococcoidesspp. to use a broad range of chemicals from this class as term<strong>in</strong>al electronacceptors shows potential for bioremediation use. The strictly anaerobicDehalococcoides sp. CBDB1 utilizes a wide range of electron acceptorswith the help of its reductive dehalogenase enzymes. In the sequencedgenome are 32 different reductive-dehalogenase-homologous (rdh) geneoperons annotated [1]. The high number of rdh clusters sparks a special<strong>in</strong>terest <strong>in</strong> the differences between the gene products. Strong substratespecificities of the encoded rdh genes can expla<strong>in</strong> this. To analyse theBIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!