20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

192network stabilizes the reactive Cys14 thiolate that is 8-9 Å apart fromCys49'. HypR oxidation breaks these H-bonds, reorients the monomersand moves the major groove recognition alpha4 and alpha4' helices ~4 Åtowards each other. This is the first crystal structure of a redox-sens<strong>in</strong>gMarR/DUF24 family prote<strong>in</strong> <strong>in</strong> bacteria that is activated by NaOCl stress.S<strong>in</strong>ce hypochloric acid is released by activated macrophages as majordefense mechanism, related HypR-like regulators could function to protectpathogens aga<strong>in</strong>st the host immune defense.[1] Antelmann, H., and Helmann, J.D. (2011) Thiol-based redox switches and gene regulation.Antioxid Redox Signal. 14: 1049-1063. Review.[2] Palm, G., Chi, B.K., Waack, P., Gronau, K., Becher, D., Albrecht, D., H<strong>in</strong>richs, W., Read, R.J.and Antelmann, H. Structural Insights <strong>in</strong>to the redox-switch mechanism of the MarR/DUF24 familyregulator HypR. Nucleic Acid Research, In Revision.RSV004How the P II prote<strong>in</strong> from Synechococcus <strong>in</strong>tegrates metabolicwith energy signals to control its targets.O. Fok<strong>in</strong>a*, K. ForchhammerUniversity Tüb<strong>in</strong>gen, Organismic Interactions, Tüb<strong>in</strong>gen, GermanyP II signal transduction prote<strong>in</strong>s have key functions <strong>in</strong> coord<strong>in</strong>ation ofcentral metabolism by <strong>in</strong>tegrat<strong>in</strong>g signals from carbon, nitrogen andenergy status of the cell. They b<strong>in</strong>d the metabolites ATP, ADP and 2-oxoglutarate (2-OG) and control enzymes, transporters and transcriptionfactors <strong>in</strong>volved <strong>in</strong> nitrogen metabolism. Depend<strong>in</strong>g on its effectormolecule b<strong>in</strong>d<strong>in</strong>g status, P II from Synechococcus elongatus b<strong>in</strong>ds a smallprote<strong>in</strong> termed PipX, which is a co-activator of the transcription factorNtcA, and regulates the key enzyme of the cyclic ornith<strong>in</strong>e pathway, N-acetyl-L-glutamate k<strong>in</strong>ase (NAGK). P II b<strong>in</strong>ds ATP and 2-OG <strong>in</strong> asynergistic manner, with the ATP-b<strong>in</strong>d<strong>in</strong>g sites also accept<strong>in</strong>g ADP.Different ADP/ATP ratios strongly affect the properties of P II signal<strong>in</strong>g<strong>in</strong>clud<strong>in</strong>g 2-OG b<strong>in</strong>d<strong>in</strong>g and <strong>in</strong>teractions with its target prote<strong>in</strong>s. ADPmodulates P II signal<strong>in</strong>g to the receptor NAGK primarily at low 2-OGlevels and antagonises the <strong>in</strong>hibitory effect of 2-OG for P II-PipX<strong>in</strong>teraction. Apparently P II has a f<strong>in</strong>e-tuned mechanism of sens<strong>in</strong>g bothchang<strong>in</strong>g energy charge and carbon/nitrogen balance at the same time.Fok<strong>in</strong>a O., Chellamuthu VR., Zeth K., & Forchhammer K. (2010) A novel signal transduction prote<strong>in</strong> PIIvariant from Synechococcus elongatus PCC 7942 <strong>in</strong>dicates a two-step process for NAGK-PII complexformation. J. Mol. Biol. 399:410-421.Fok<strong>in</strong>a O., Herrmann C. & Forchhammer K. (2011) Signal transduction prote<strong>in</strong> PII from Synechococcuselongatus PCC 7942 senses low adenylate energy charge <strong>in</strong> vitro. Biochem. J. 440:147-56.RSV005Post-translational modification determ<strong>in</strong>es the substratespecificity of a carboxylic acid-coenzyme A ligaseJ. Oberender*, M. BollUni Leipzig, Biochemie, Leipzig, GermanyIn anaerobic bacteria most aromatic growth substrates are converted to thecentral <strong>in</strong>termediate benzoyl-CoA. E.g., <strong>in</strong> case of benzoate and p-hydroxybenzoate degradation, the <strong>in</strong>itial steps are usually catalyzed by<strong>in</strong>dividual, highly specific carboxylic acid CoA ligases 1 . We established afirst genetic system for the obligately anaerobic model organismGeobacter metallireducens and disrupted the gene encod<strong>in</strong>g benzoate-CoAligase (bamY) as a proof of pr<strong>in</strong>ciple. This enzyme is highly specific forbenzoate as substrate 2 . Unexpectedly, a bamY - mutant was still able togrow on benzoate with a growth rate similar to that of the wild type. Inagreement, we identified a previously unknown succ<strong>in</strong>yl-CoA:benzoateCoA transferase, which obviously fully compensated for the bamYknockout. Surpris<strong>in</strong>gly, the bamY - mutant was no longer able to utilize p-hydroxybenzoate as carbon source, although isolated BamY was unable toactivate p-hydroxybenzoate. Growth on p-hydroxybenzoate was observedaga<strong>in</strong> <strong>in</strong> the presence of a plasmid express<strong>in</strong>g <strong>in</strong>tact bamY, suggest<strong>in</strong>g thatbamY is <strong>in</strong>volved <strong>in</strong> p-hydroxybenzoate catabolism. Strictly dependent onacetyl-CoA, <strong>in</strong>cubation of purified BamY with dialyzed extract of cellsgrown on p-hydroxybenzoate converted BamY to a p-hydroxybenzoate-CoA ligase. Results of MS-analysis of tryptic digests suggest that differentpatterns of N -lys<strong>in</strong>e acetylation were responsible for altered substratespecificities of BamY. Though N -acetylation of active site lys<strong>in</strong>es hasbeen reported to switch the activity of carboxylic acid CoA ligases off 3 , themodulation of substrate specificity via post-translational N -lys<strong>in</strong>eacetylation was previously known.1 Fuchs G (2008), Ann N Y Acad Sci 1125:82-992 Wischgoll et al. (2005), Mol Microbiol 58:1238-12523 Crosby et al. (2010), Mol Microbiol 76:874-888RSV006Hot signal transduction <strong>in</strong> the thermoacidophiliccreanarchaeum Sulfolobus acidocaldariusD. Esser* 1 , J. Reimann 2 , T.K. Pham 3 , S.V. Albers 2 , P.C. Wright 2 , B. Siebers 1,21 Universitiy of Duisburg-Essen, Molecular Enzyme Technology &Biochemistry, Essen, Germany2 Molecular Biology of Archaea, Max Planck Institute for TerrestrialMicrobiology, Marburg, Germany3 ChELSI Institute, Department of Chemical and Biological Eng<strong>in</strong>eeri, Sheffield,United K<strong>in</strong>gdomPosttranslational modifications are of major <strong>in</strong>terest for the regulation ofcellular processes. Reversible prote<strong>in</strong> phosphorylation is the ma<strong>in</strong>mechanism to control the functional properties of prote<strong>in</strong>s <strong>in</strong> response toenvironmental stimuli [1]. In the 80’s prote<strong>in</strong> phosphorylation has beendemonstrated <strong>in</strong> the third doma<strong>in</strong> of life, the Archaea [2]. However, so faronly few phospho(p) prote<strong>in</strong>s were identified and few prote<strong>in</strong> k<strong>in</strong>ases andprote<strong>in</strong> phosphatases were <strong>in</strong>vestigated. The archaeal phosphorylationmach<strong>in</strong>ery <strong>in</strong> general resembles more the eucaryal (Ser, Thr and Tyrphosphorylation) than the bacterial mach<strong>in</strong>ery (two- and one-componentsystems, Asp and His phosphorylation). Bio<strong>in</strong>formatic analysis revealedthat Ser, Thr and Tyr phosphorylation is ubiquitous <strong>in</strong> Archaea, whereastwo- and one-component systems are only present <strong>in</strong> the euryarchaeota(e.g. CheA/CheY <strong>in</strong> Halobacterium sal<strong>in</strong>arium) [1,3].Model organism of this study is the thermoacidophilic CreanarchaeonSulfolobus acidocaldarius, with optimal growth at 78°C and pH of 2-3 [4].Bio<strong>in</strong>formatic <strong>in</strong>vestigation revealed that S.acidocaldarius harbors twelveprote<strong>in</strong> k<strong>in</strong>ases and two prote<strong>in</strong> phosphatases [1]. N<strong>in</strong>e of the twelveidentified prote<strong>in</strong> k<strong>in</strong>ases (PK) show high sequence similarity to eukaryaltype like prote<strong>in</strong> k<strong>in</strong>ases and the rema<strong>in</strong><strong>in</strong>g three to atypical prote<strong>in</strong>k<strong>in</strong>ases. The two prote<strong>in</strong> phosphatases (PP) show similarity to prote<strong>in</strong>tyros<strong>in</strong>e phosphates (PTP) and prote<strong>in</strong> phosphatases (PPP). Furthermore,Sulfolobus species itself have an unusual high PK to PP ratio (12:2)compared to other archaea (3:1 to 1:1) [1]. First analysis of the p-proteomerevealed a high no. of p-prote<strong>in</strong>s and a high no. of p-Tyr (Ser 31.8%, Thr24.8%, Tyr 43.3%). The detected p-prote<strong>in</strong>s are found <strong>in</strong> all major arCOGcategories.In order to <strong>in</strong>vestigate signal transduction <strong>in</strong> S. acidocaldarius we clonedand characterized the PP2A catalytic subunit from S. acidocaldarius. Untilknow, all <strong>in</strong>vestigated archaeal PPPs are members of the PP1-arch [5-7]and so far no member of the PP2-arch was characterized. This is the firstdetailed characterization of an archaeal PP2A. The current understand<strong>in</strong>gof signal transduction <strong>in</strong> S. acidocaldarius with focus on the PP2A will bepresented.1. Kennelly, P.J., Biochemical Journal, 2003. 370(2): p. 373-389.2. Spudich, J.L. and W. Stoeckenius, Journal of Biological Chemistry, 1980. 255(12): p. 5501-5503.3. Rudolph, J. and D. Oesterhelt, EMBO Journal, 1995. 14(4): p. 667-673.4. Grogan, D.W., Journal of Bacteriology, 1989. 171(12): p. 6710-6719.5. Mai, B., et al., Journal of Bacteriology, 1998. 180(16): p. 4030-4035.6. Solow, B., J.C. Young, and P.J. Kennelly, Journal of Bacteriology, 1997. 179(16): p. 5072-5075.7. Leng, J., et al., Journal of Bacteriology, 1995. 177(22): p. 6510-6517.RSV007A novel LuxR-based cell-to-cell communication system <strong>in</strong> theentomopathogen Photorhabdus lum<strong>in</strong>escensI. Hitkova 1 , C. Manske 1 , S. Brameyer 1 , K. Schubert 1 , C. Harmath 1 ,S. L<strong>in</strong>nerbauer 1 , S. Joyce 2 , D. Clarke 2 , R. Heermann* 11 Ludwig-Maximilians-Universität München, Biozentrum, BereichMikrobiologie, Mart<strong>in</strong>sried/München, Germany2 University College Cork, Department of Microbiology and AlimentaryPharmabiotic Centre, Cork, Ireland, IrelandCell-to-cell communication via acyl-homoser<strong>in</strong>e lactones (AHL) is wellstudied <strong>in</strong> many Gram-negative bacteria. The prototypical communicationsystem consists of a LuxI-type auto<strong>in</strong>ducer synthase and a LuxR-typereceptor that detects the endogenously produced signal. The symbiotic andentomopathogenic enteric bacterium Photorhabdus lum<strong>in</strong>escens harbors39 LuxR-like receptors, but lacks any LuxI-type auto<strong>in</strong>ducer synthase andis unable to produce AHL. It is unclear whether P. lum<strong>in</strong>escens uses theseorphan LuxR homologues for the detection of exogenous or endogenoussignals. In this study we demonstrate that P. lum<strong>in</strong>escens does engage <strong>in</strong>endogenous LuxR-based cell-cell communication. We show that one of theLuxR homologues, Plu4562 (PluR), detects an endogenously producedsignal<strong>in</strong>g molecule (PLAI-1) that is not an AHL but, rather, a 2-pyronederivative named photopyrone. We also show that PluR positivelyregulates the expression of the plu4568-plu4563 operon, encod<strong>in</strong>g genes<strong>in</strong>volved <strong>in</strong> cell clump<strong>in</strong>g. However plu4568-plu4563 is not responsiblefor the production of PLAI-1 and the nature of the clump<strong>in</strong>g factorproduced by this operon rema<strong>in</strong>s unidentified. We also show that theLysR-type regulator HexA, which is a global repressor of symbiosis genes<strong>in</strong> P. lum<strong>in</strong>escens, represses plu4568-plu4563 expression. This suggeststhat the plu4568-plu4563 operon may be <strong>in</strong>volved <strong>in</strong> the mutualistic<strong>in</strong>teraction between P. lum<strong>in</strong>escens and the nematode. Indeed we haveshown that colonization of the symbiotic partner Heterorhabditisbacteriophora by a P. lum<strong>in</strong>escens pluR mutant does appear to beBIOspektrum | Tagungsband <strong>2012</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!