11.03.2015 Views

Physiology and Molecular Biology of Stress ... - KHAM PHA MOI

Physiology and Molecular Biology of Stress ... - KHAM PHA MOI

Physiology and Molecular Biology of Stress ... - KHAM PHA MOI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Salt <strong>Stress</strong><br />

93<br />

Munns, R. <strong>and</strong> James, R.A. (2003). Screening methods for salinity tolerance: a case study with<br />

tetraploid wheat. Plant Soil. 253, 201-218.<br />

Munns, R., Hare, R.A. James, R.A. <strong>and</strong> Rebetzke, G.J. (2000). Genetic variation for improving the<br />

salt tolerance <strong>of</strong> durum wheat. Aust. J. Agric. Res. 51, 69-74.<br />

Munns, R., Husain, S., Rivelli, A.R., James, R.A., Condon, A.G., Lindsay, M.P., et al. (2002). Avenues<br />

for increasing salt tolerance <strong>of</strong> crops, <strong>and</strong> the role <strong>of</strong> physiologically based selection traits. Plant<br />

Soil. 247, 93-105.<br />

Munns, R., Tonnet, M.L., Shennan, C. <strong>and</strong> Gardner, A. (1988). Effect <strong>of</strong> high external NaCl concentrations<br />

on ion transport within the shoot <strong>of</strong> Lupinus albus. II. Ions in phloem sap. Plan Cell<br />

Environ. 11, 291-300.<br />

Muranaka, S., Shimizu, K. <strong>and</strong> Kato, M. (2002). Ionic <strong>and</strong> osmotic effects <strong>of</strong> salinity on single leaf<br />

photosynthesis in two wheat cultivars with different drought tolerance. Photosynthetica. 40,<br />

201-207.<br />

Nair, S., Jha, P.K. <strong>and</strong> Babu, C.R. (1993). Induced salt-tolerant rhizobia, from extremely salt-tolerant<br />

Rhizobium gene pools, form reduced but effective symbiosis under non-saline growth conditions<br />

<strong>of</strong> legume host. Microbios 74, 39-51.<br />

Nelson, D.E., Koukoumanos, M. <strong>and</strong> Bohnert, H.J. (1999). Myo-inositol dependent sodium uptake<br />

in ice plant. Plant Physiol. 119, 165-172.<br />

Nemoto, Y., Kawakami, N. <strong>and</strong> Sasakuma, T. (1999). Isolation <strong>of</strong> novel early salt responding genes<br />

from wheat (Triticum aestivum L.) by differential display. Theor. Appl. Genet. 98, 673-678.<br />

Neumann, P. (1997). Salinity resistance <strong>and</strong> plant growth revisited. Plant Cell Environ. 20, 1193-<br />

1198.<br />

Niu, X., Bressan, R.A., Hasegawa, P.M. <strong>and</strong> Pardo J.M. (1995). Ion homeostasis in NaCl stress<br />

environments. Plant Physiol. 109, 735-742.<br />

Niu, X., Narasimhan, M.L., Salzman, R.A., Bressan, R.A. <strong>and</strong> Hasegawa, P.M. (1993). NaCl regulation<br />

<strong>of</strong> plasma membrane H + -ATPase gene expression in a glycophyte <strong>and</strong> a halophyte. Plant<br />

Physiol. 103, 713-718.<br />

Nogales, J., Campos, R., Benabdelkhalek, H., Olivares, J., Ljuch, C. <strong>and</strong> Sanjuan J. (2002). Rhizobium<br />

tropici genes involved in free-living salt tolerance are required for the establishment <strong>of</strong> efficient<br />

nitrogen fixing symbiosis with Phaseolus vulgaris. Mol. Plant Microbe Interact. 15, 225-232.<br />

Nublat, A., Desplans, J., Casse, F. <strong>and</strong> Berthomieu, P. (2001). Sas1, an Arabidopsis mutant<br />

overaccumulating sodium in the shoot, shows deficiency in the control <strong>of</strong> the root radial transport<br />

<strong>of</strong> sodium. Plant Cell. 13, 125-137.<br />

Nuccio, M.L., Rhodes, D., McNeil, S.D. <strong>and</strong> Hanson, A.D. (1999). Metabolic engineering <strong>of</strong> plants<br />

for osmotic stress tolerance. Curr. Opin. Plant Biol. 2, 128-134.<br />

O’Leary, J.W. (1994). The agricultural use <strong>of</strong> native plants on problem soils. In A.R. Yeo <strong>and</strong> T.J.<br />

Flowers (Eds.), Soil Mineral <strong>Stress</strong>es: Approaches to Crop Improvement (pp. 127-143). Berlin:<br />

Springer-Verlag.<br />

Ochiai, K. <strong>and</strong> Matoh,T. (2001). Mechanism <strong>of</strong> salt tolerance in the grass species, Anneurolepidium<br />

chinense. I Growth response to salinity <strong>and</strong> osmotic adjustment. Soil Sci. Plant Nutr. 47, 579-<br />

585.<br />

Oertli, J.J. (1968). Extracellular salt accumulation, a possible mechanism <strong>of</strong> salt injury in plants.<br />

Agrochimica, 12, 461-469.<br />

Ohta, M., Hayashi, Y., Nakashima, A., Hamada, A., Tanaka, A., Nakamura, T., et al. (2002).<br />

Introduction <strong>of</strong> a Na + /H + antiporter from Atriplex gmelini confers salt tolerance to rice. FEBS<br />

Lett. 532, 279-282.<br />

Okuma, E., Soeda, K., Fukuda, M., Tada, M. <strong>and</strong> Murata, Y. (2002). Negative correlation between the<br />

ratio <strong>of</strong> K + to Na + <strong>and</strong> proline accumulation in tobacco suspension cells. Soil Sci. Plant Nutrit. 48,<br />

753-757.<br />

Olt, S., Krotz, E., Komor, E., Rokitta, M. <strong>and</strong> Haasa, A. (2000). Na-23 <strong>and</strong> H-1 microimaging <strong>of</strong><br />

intact plants. J. Magn. Reson. 144, 297-304.<br />

Osmond, C.B., Bjorkman, O. <strong>and</strong> Anderson, D.J. (1980). Physiological Processes in Plant Ecology.<br />

Towards a synthesis with Atriplex. Berlin, Heidelberg, New York: Springer Verlag.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!