11.03.2015 Views

Physiology and Molecular Biology of Stress ... - KHAM PHA MOI

Physiology and Molecular Biology of Stress ... - KHAM PHA MOI

Physiology and Molecular Biology of Stress ... - KHAM PHA MOI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Metabolic Engineering for <strong>Stress</strong> Tolerance<br />

297<br />

SOS1 encodes a putative Naþ/Hþ antiporter. Proc. Natl. Acad. Sci. U. S. A. 97, 6896–6901.<br />

Shi, H., Quintero, F.J., Pardo, J. M. <strong>and</strong> Zhu, J.-K. (2002). The putative plasmamembraneNa 1+ /H 1+<br />

antiporter SOS1 controls long-distance Na 1+ transport in plants. Plant Cell 14, 465–477.<br />

Shlumukov, L.R., Barro, F., Barcelo, P., Lazzeri, P. <strong>and</strong> Smith, H. (2001). Establishment <strong>of</strong> far-red<br />

high irradiance responses in wheat through transgenic expression <strong>of</strong> an oat phytochrome A<br />

gene. Plant Cell Environ. 24, 703–712.<br />

Shou, H., Bordallo, P. <strong>and</strong> Wang, K. (2004). Expression <strong>of</strong> the Nicotiana protein kinase (NPK1)<br />

enhanced drought tolerance in transgenic maize. J. Exp. Bot. 55, 1013-1019.<br />

Slooten, L., Capiau, K., Van Camp, W., Van Montagu, M., Sybesma, C. <strong>and</strong> Inze, D. (1995). Factors<br />

affecting the enhancement <strong>of</strong> oxidative stress tolerance in transgenic tobacco overexpressing<br />

manganese superoxide dismutase in the chloroplasts. Plant Physiol. 107, 737-750.<br />

Smith, H. (1992). The ecological functions <strong>of</strong> the phytochrome family: clues to a transgenic<br />

programme <strong>of</strong> crop improvement. Photochem. Photobiol. 56, 815–822.<br />

Smith, H. (1994). Sensing the light environment: the functions <strong>of</strong> the phytochrome family. In RE<br />

Kendrick, GHM Kronenberg, eds, Photomorphogenesis in Plants, Ed 2, Vol 2. Kluwer, Dordrecht,<br />

The Netherl<strong>and</strong>s, pp 377–416.<br />

Smith, H. (2000). Phytochromes <strong>and</strong> light signal perception by plants: an emerging synthesis.<br />

Nature 407, 585–590.<br />

Smith, H. <strong>and</strong> Holmes, M.G. (1977). The function <strong>of</strong> phytochrome in the natural environment: III.<br />

Measurement <strong>and</strong> calculation <strong>of</strong> phytochrome photoequilibrium. Photochem. Photobiol. 25,<br />

547–550.<br />

Smolenska, G. <strong>and</strong> Kuiper, P.J.C. (1977). Effect <strong>of</strong> low temperature upon lipid <strong>and</strong> fatty acid<br />

composition <strong>of</strong> roots <strong>and</strong> leaves <strong>of</strong> winter rape plants. Physiol. Plant. 41, 29–35.<br />

Stearns, J.C. <strong>and</strong> Glick, B.R. (2003). Transgenic plants with altered ethylene biosynthesis or perception.<br />

Biotechnol. Adv. 21, 193-210.<br />

Steffens, J.C. (1990). The heavy metal-binding peptides <strong>of</strong> plants. Annu. Rev. Plant Physiol. Plant<br />

Mol. Biol. 41, 553–575.<br />

Stitt, M. <strong>and</strong> Hurry, V. (2002). A plant for all seasons: alterations in photosynthetic carbon metabolism<br />

during cold acclimation in Arabidopsis. Curr. Opin. Plant Biol. 5, 199–206.<br />

Stockinger, E.J., Gilmour, S.J. <strong>and</strong> Thomashow, M.F. (1997). Arabidopsis thaliana CBF1 encodes an<br />

AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting<br />

DNA regulatory element that stimulates transcription in response to low temperature <strong>and</strong> water<br />

deficit. Proc. Natl. Acad. Sci. USA 94, 1035-1040.<br />

Str<strong>and</strong>, A., Foyer, C. H., Gustafsson, P., Gardeström, P. <strong>and</strong> Hurry, V. (2003). Altering flux through<br />

the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic<br />

acclimation at low temperatures <strong>and</strong> the development <strong>of</strong> freezing tolerance. Plant, Cell Environ.<br />

26, 523–535.<br />

Suh, M.C., Choi, D. <strong>and</strong> Liu, J.R. (1998). Cadmium resistance in transgenic tobacco plants expressing<br />

the Nicotiana glutinosa L. metallothionein-like gene. Mol. Cells 8, 678–684.<br />

Sulpice R., Tsukaya H., Nonaka H., Mustardy L., Chen T.H.H., <strong>and</strong> N. Murata. (2003). Enhanced<br />

formation <strong>of</strong> flowers in salt-stressed Arabidopsis after genetic engineering <strong>of</strong> the synthesis <strong>of</strong><br />

glycine betaine. Plant J. 36, 165-176.<br />

Sunkar, R., Kaplan, B., BoucheÂ, N., Arazi, T., Dolev, D., Talke, I. N., Frans, J.M., S<strong>and</strong>ers, M. D.,<br />

Bouchez, D. <strong>and</strong> Fromm, H. (2000). Expression <strong>of</strong> a truncated tobacco NtCBP4 channel in<br />

transgenic plants <strong>and</strong> disruption <strong>of</strong> the homologous Arabidopsis CNGC1 gene confer Pb 2+<br />

tolerance Plant J. 24, 533-542.<br />

Tadege, M. <strong>and</strong> Kuhlemeier, C. (1997). Anoxia fermentation during tobacco pollen development.<br />

Plant Mol. Biol. 35, 343-354.<br />

Tadege, M., Rol<strong>and</strong>, B., <strong>and</strong> K. Cris. (1998). Anoxia tolerance in tobacco roots: effect <strong>of</strong> overexpression<br />

<strong>of</strong> pyruvate decarboxylase. Plant J., 14, 327.<br />

Taiz, L. <strong>and</strong> Zeiger, E. (Eds). (2002). Plant <strong>Physiology</strong>, 3rd ed., Sinauer Associates.<br />

Tepperman, J.M. <strong>and</strong> Dunsmuir, P. (1990). Transformed plants with elevated levels <strong>of</strong> chloroplast<br />

SOD are not more resistant to superoxide toxicity. Plant Mol. Biol. 14, 501-511.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!