05.01.2013 Views

Biofuels in Perspective

Biofuels in Perspective

Biofuels in Perspective

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

150 <strong>Biofuels</strong><br />

46. H. Fukuda, Immobilized microorganism bioreactors, <strong>in</strong> Bioreactor System Design, J. A. Asenjo<br />

and J. C. Merchuk (eds.), Marcel Dekker, New York, 1995.<br />

47. K. Ban, M. Kaieda, T. Matsumoto, A. Kondo and H. Fukuda, Whole cell biocatalyst for biodiesel<br />

fuel production utiliz<strong>in</strong>g Rhizopus oryzae cells immobilized with<strong>in</strong> biomass support particles,<br />

Biochem. Eng., J., 8, 39–43 (2001).<br />

48. K. Ban, S. Hama, K. Nishizuka, M. Kaieda, T. Matsumoto, A. Kondo, H. Noda and H. Fukuda, Repeated<br />

use of whole-cell biocatalysts immobilized with<strong>in</strong> biomass support particles for biodiesel<br />

fuel production, J. Mol. Catal. B: Enz., 17, 157–165 (2002).<br />

49. S. Hama, H. Yamaji, T. Fukumizu, T. Numata, S. Tamalampudi, A. Kondo, H. Noda and H.<br />

Fukuda, Biodiesel-fuel production <strong>in</strong> a packed-bed reactor us<strong>in</strong>g lipase-produc<strong>in</strong>g Rhizopus<br />

oryzae cells immobilized with<strong>in</strong> biomass support particles, Biochem. Eng. J. (to be submitted).<br />

50. S. Hama, H. Yamaji, M. Kaieda, M. Oda, A. Kondo and H. Fukuda, Effect of fatty acid membrane<br />

composition on whole-cell biocatalysts for biodiesel-fuel production, Biochem. Eng. J., 21,<br />

155–160 (2004).<br />

51. H. Mizoguchi, S. Hara, Ethanol-<strong>in</strong>duced alterations <strong>in</strong> lipid composition of Saccharomyces<br />

cerevisiae <strong>in</strong> the presence of exogenous fatty acid, J. Ferment. Bioeng., 83, 12–16 (1997).<br />

52. H. Mizoguchi, S. Hara, Effect of fatty acid saturation <strong>in</strong> membrane lipid bilayers on simple<br />

diffusion <strong>in</strong> the presence of ethanol at high concentrations, J. Ferment. Bioeng., 81, 406–411<br />

(1996).<br />

53. M. Langner, S. W. Hui, Effect of free fatty acids on the permeability of 1,2-dimyristoyl-snglycero-3-phosphochol<strong>in</strong>e<br />

bilayer at the ma<strong>in</strong> phase transition, Biochim. Biophys. Acta, 1463,<br />

439–447 (2000).<br />

54. U. Locher, U. Leuschner, LUV’s lipid composition modulates diffusion of bile acids, Chem.<br />

Phys. Lipids, 110 (2000), 165–171.<br />

55. J. L. Ramos, E. Duque, J-J. Rodriguez-Herva, P. Godoy, A. Haïdour, F. Reyes, A. Fernandez-<br />

Barrero, Mechanism for solvent tolerance <strong>in</strong> bacteria, J. Biol. Chem., 272, 3887–3890 (1997).<br />

56. S. Hama, S. Tamalampudi, T. Fukumizu, K. Miura, H. Yamaji, A. Kondo and H. Fukuda,<br />

Lipase localization <strong>in</strong> Rhizopus oryzae cells immobilized with<strong>in</strong> biomass support particles for<br />

use as whole-cell biocatalysts <strong>in</strong> biodiesel-fuel production, J. Biosci. Bioeng., 101, 328–333<br />

(2006).<br />

57. H.-D. Beer, G. Wohlfahrt, R. D. Schmid and J. E. G. McCarthy, The fold<strong>in</strong>g and activity of<br />

the extracellular lipase of Rhizopus oryzae are modulated by a prosequence, Biochem. J., 319,<br />

351–359 (1996).<br />

58. M. Ueda, S. Takahashi, M. Washida, S. Shiraga and A. Tanaka, Expression of Rhizopus oryzae<br />

lipase gene <strong>in</strong> Saccharomyces cerevisiae, J. Mol. Catal. B: Enz., 17, 113–124 (2002).<br />

59. R. Schüle<strong>in</strong>, The early stages of the <strong>in</strong>tracellular transport of membrane prote<strong>in</strong>s: cl<strong>in</strong>ical and<br />

pharmacological implications, Rev. Physiol. Biochem. Pharmacol., 151, 45–91 (2004).<br />

60. E. T. Boder and K. D. Wittrup, Yeast surface display for screen<strong>in</strong>g comb<strong>in</strong>atorial polypeptide<br />

libraries, Nat. Biotechnol. 15, 553–557 (1997).<br />

61. G. Georgiou, H. L. Poetschke, C. Stathopoulos and J. A. Francisco, Practical applications of<br />

eng<strong>in</strong>eer<strong>in</strong>g gram-negative bacterial cell surfaces, Biotechnol., 11, 6–10 (1993).<br />

62. S. Stahl and M. Uhlen, Bacterial surface display: trends and progress, Trends Biotechnol., 15,<br />

185–192 (1996).<br />

63. J. A. Francisco, C. F. Earhart and G. Georgiou, Transport and anchor<strong>in</strong>g of beta-lactamase to the<br />

external surface of Escherichia coli, Proc. Natl. Acad. Sci. U. S. A., 89, 2713–2717 (1992).<br />

64. J. A. Francisco, C. Stathopoulos, R. A. Warren, D. G. Kilburn and G. Georgiou, Specific adhesion<br />

and hydrolysis of cellulose by <strong>in</strong>tact Escherichia coli express<strong>in</strong>g surface anchored cellulase or<br />

cellulose b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>s, Biotechnology, 11, 491–495 (1993).<br />

65. M. Little, P. Fuchs, F. Breitl<strong>in</strong>g and S. Dubel, Bacterial surface presentation of prote<strong>in</strong>s and<br />

peptides: an alternative to phage technology? Trends Biotechnol., 11, 3–5 (1982).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!