05.01.2013 Views

Biofuels in Perspective

Biofuels in Perspective

Biofuels in Perspective

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Biological Hydrogen Production by Anaerobic Microorganisms 215<br />

the H2-produc<strong>in</strong>g reactions. Dependent on the electron carrier used, energy-conserv<strong>in</strong>g<br />

membrane-bound hydrogenases as well as cytoplasmic hydrogenases appear to catalyze<br />

the ultimate H2 form<strong>in</strong>g reactions. However, to make biohydrogen formation feasible we<br />

need to <strong>in</strong>crease the H2/glucose ratio beyond the current maximum of 4. To achieve this,<br />

future research will focus on metabolic eng<strong>in</strong>eer<strong>in</strong>g to decrease the amount of acetate or<br />

on acetate oxidation by electricity-mediated electrolysis or photofermentation.<br />

Acknowledgment<br />

Our research on biological hydrogen formation was f<strong>in</strong>ancially supported by the Dutch<br />

Programme Economy, Ecology, Technology (EET), a jo<strong>in</strong>t <strong>in</strong>itiative of the M<strong>in</strong>istries of<br />

Economic Affairs, Education, Culture and Sciences, and of Hous<strong>in</strong>g, Spatial Plann<strong>in</strong>g<br />

and the Environment (EETK03028 BWPII) and the Commission of the European Communities,<br />

Sixth Framework Programme, Priority 6, Susta<strong>in</strong>able Energy Systems (019825<br />

HYVOLUTION).<br />

References<br />

1. B. Sch<strong>in</strong>k, and A. J. M. Stams, Syntrophism among prokaryotes, <strong>in</strong> The prokaryotes (electronic<br />

third edition), M. Dwork<strong>in</strong>, K.-H. Schleifer and E. Stackebrandt (Eds), Spr<strong>in</strong>ger Verlag, New<br />

York, 2002.<br />

2. S. H. Z<strong>in</strong>der, Syntrophic acetate oxidation and ‘reversible acetogenesis’, <strong>in</strong> Acetogenesis,H.L.<br />

Drake (Ed), Chapman and Hall, New York, pp 386–415, 1994.<br />

3. I. K. Kapdan and F. Kargi, Bio-hydrogen production from waste materials, Enz. Microbiol.<br />

Technol., 38, 569–582 (2006).<br />

4. P. A. M. Claassen, J. B. van, A. M. Lopez Contreras, E. W. J. van Niel, L. Sijtsma, A. J. M.<br />

Stams, S. S. de Vries and R. A. Weusthuis, Utlisation of biomass for the supply of energy<br />

carriers, Appl. Microbiol. Biotechnol., 52, 741–755 (1999).<br />

5. E. W. J. van Niel, M. A. W. Budde, G.G. de Haas, F. J. Van Der Wal, P. A. M. Claassen<br />

and A. J. M. Stams, Dist<strong>in</strong>ctive properties of high hydrogen produc<strong>in</strong>g extreme thermophiles,<br />

Caldicellulosiruptor saccharolyticus and Thermotoga elfii, Int. J. Hydrogen, 27, 1391–1398<br />

(2002).<br />

6. R. K. Thauer, K. Jungermann and K. Decker, Energy conservation <strong>in</strong> chemotrophic anaerobic<br />

bacteria, Bacteriol. Rev., 41, 100–180 (1977).<br />

7. J. P. Amend and E. L. Shock, Energetics of overall metabolic reactions of thermophilic and<br />

hyperthermophilic Archaea and Bacteria, FEMS microbiol. Rev., 25, 175–243 (2001).<br />

8. J. P. Amend and A. V. Plyasunov, Carbohydrates <strong>in</strong> the thermophilic metabolism: calculation<br />

of the standard molal thermodynamic properties of aqueous pentoses and hexoses at elevated<br />

temperatures and pressures, Geochim. Cosmochim. Acta, 64, 3901–3917 (2001).<br />

9. T. de Vrije and P. A. M. Claassen, Dark hydrogen fermentations, <strong>in</strong> Bio-methane & Biohydrogen,<br />

J. H. Reith, R. H. Weiffels and H. Barten (eds.), Smiet Offset, The Hague, pp 103–123,<br />

2003.<br />

10. S. Tanisho, Y. Suzuki and N. Wakao, Fermentative hydrogen evolution by Enterobacter aerogenes<br />

stra<strong>in</strong> E82005, Int. J. Hydrogen Energy, 12, 623–627 (1987).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!