05.01.2013 Views

Biofuels in Perspective

Biofuels in Perspective

Biofuels in Perspective

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

218 <strong>Biofuels</strong><br />

49. M. J. Axley, D. A. Grahame and T. C. Stadtman, Escherichia coli formate-hydrogen lyase.<br />

Purification and properties of the selenium-dependent formate dehydrogenase component, J.<br />

Biol. Chem., 265, 18213–18218 (1990).<br />

50. R. G. Sawers, Formate and its role <strong>in</strong> hydrogen production <strong>in</strong> Escherichia coli, Biochem. Soc.<br />

Trans., 33, 42–46 (2005).<br />

51. M. Hakobyan, H. Sargsyan and K. Bagramyan, Proton translocation coupled to formate oxidation<br />

<strong>in</strong> anaerobically grown ferment<strong>in</strong>g Escherichia coli, Biophys. Chem., 115, 55–61 (2005).<br />

52. A. Bisaillon, J. Turcot and P. C. Hallenbeck, The effect of nutrient limitation on hydrogen<br />

production by batch cultures of Escherichia coli, Int. J. Hydrogen Energy, 31, 1504–1508<br />

(2006).<br />

53. N. Kumar, A. Ghosh and D. Das, Redirection of biochemical pathways for the enhancement of<br />

H2 production by Enterobacter cloacae, Biotechnol. Lett., 23, 537–541 (2001).<br />

54. K. Nath, A. Kumar and D. Das, Effect of some environmental parameters on fermentative<br />

hydrogen production by Enterobacter cloacae DM11, Can. J. Microbiol., 52, 525–532<br />

(2006).<br />

55. M. A. Rachman, Y. Furutani, Y. Nakashimada, T. Kakizono and N. Nishio, Enhanced hydrogen<br />

production <strong>in</strong> altered mixed acid fermentation of glucose by Enterobacter aerogenes, J. Ferm.<br />

Bioeng., 83, 358–363 (1997).<br />

56. T. Ito, Y. Nakashimada, T. Kakizono and N. Nishio, High-yield production of hydrogen by<br />

Enterobacter aerogenes mutants with decreased α-acetolactate synthase activity, J. Biosci.<br />

Bioeng<strong>in</strong>., 97, 227–232 (2004).<br />

57. A. Yoshida, T. Nishimura, H. Kawaguchi, M. Inui and H. Yukawa, Enhanced hydrogen production<br />

from glucose us<strong>in</strong>g ldh –andfrd-<strong>in</strong>activated Escherichia coli stra<strong>in</strong>s, Appl. Microbiol.<br />

Biotechnol. 73, 67–72 (2006).<br />

58. A. Yoshida, T. Nishimura, H. Kawaguchi, M. Inui and H. Yukawa, Enhanced hydrogen production<br />

from formic acid by formate hydrogen lyase-overexpress<strong>in</strong>g Escherichia coli stra<strong>in</strong>s,<br />

Appl. Environ. Microbiol., 71, 6762–6768 (2005).<br />

59. F. Canganella and J. Wiegel, The potential of thermophilic clostridia <strong>in</strong> biotechnology, <strong>in</strong> The<br />

clostridia and biotechnology, D. R. Woods (ed.),. Butterworth-He<strong>in</strong>emann, Boston, Mass., pp.<br />

393–429, 1993.<br />

60. L. H. Carreira and L. G. Ljungdahl, Production of ethanol from biomass us<strong>in</strong>g anaerobic<br />

thermophilic bacteria, <strong>in</strong> Liquid fuel developments., D. L. Wise (ed.), CRC Press, Boca Raton,<br />

Fla., pp. 1–28, 1993.<br />

61. G. M. Awang, G. A. Jones and W. M. Ingledew The acetone-butanol-ethanol fermentation, Crit.<br />

Rev. Microbiol., 15 Suppl., 1, 33–67 (1988).<br />

62. R. Lamed and G. Zeikus, Ethanol production by thermophilic bacteria: relationship between<br />

fermentation product yields of catabolic enzyme activities <strong>in</strong> Clostridium thermocellum, J.<br />

Bacteriol., 144, 569–578 (1980).<br />

63. J. S. Chen and D. K. Blanchard, Purification and properties of the H2-oxidiz<strong>in</strong>g (uptake)<br />

hydrogenase of the N2-fix<strong>in</strong>g anaerobe Clostridium pasteurianum W5, Biochem. Biophys. Res.<br />

Commun., 122, 9–16 (1984).<br />

64. J. S. Chen and L. E. Mortenson, Purification and properties of hydrogenase from Clostridium<br />

pasteurianum W5, Biochim. Biophys. Acta, 371, 283–298 (1974).<br />

65. S. Payot, E. Guedon, E. Gelhaye and H. Petitdemange, Induction of lactate production associated<br />

with a decrease <strong>in</strong> NADH cell content enables growth resumption of Clostridium cellulolyticum<br />

<strong>in</strong> batch cultures on cellobiose, Res. Microbiol., 150, 465–473 (1999).<br />

66. E. Guedon, S. Payot, M. Desvaux and H. Petitdemange, Relationships between cellobiose<br />

catabolism, enzyme levels, and metabolic <strong>in</strong>termediates <strong>in</strong> Clostridium cellulolyticum grown<br />

<strong>in</strong> a synthetic medium. Biotechnol. Bioeng<strong>in</strong>., 67, 327–335 (2000).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!