05.01.2013 Views

Biofuels in Perspective

Biofuels in Perspective

Biofuels in Perspective

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

236 Index<br />

biofuels (Cont<strong>in</strong>ued )<br />

sources compared 4–7<br />

biomass direct burn<strong>in</strong>g 4<br />

stages<br />

first generation 95<br />

one-and-a-half generation 95–6<br />

second generation 96, 113<br />

and susta<strong>in</strong>able energy 223–4<br />

utilization convenience 4–5<br />

and world energy needs 2<br />

biogas<br />

advantages 191, 193–4<br />

from anaerobic digestion 172–4, 173<br />

contam<strong>in</strong>ant removal 189–91<br />

adsorption columns (PSA systems) 189,<br />

190<br />

carbon dioxide 189–90, 191<br />

hydrogen sulfide 190, 191<br />

quality control 189–91, 191<br />

scrubb<strong>in</strong>g methods 189, 190, 190, 191<br />

economics 172–4, 174<br />

from fermentation 172–4<br />

production configurations 183–91<br />

for dry digestion fermenters 184–5,<br />

187–9, 188, 189<br />

cont<strong>in</strong>uous mode 188–9, 189<br />

<strong>in</strong>oculum 187–8<br />

dry—wet fermentation 188, 188<br />

retention times 187, 187<br />

for wastewater digestion 183–4<br />

UASB 183–4, 184<br />

for wet digestion fermenters 184–7, 185,<br />

187<br />

direct feed<strong>in</strong>g 186, 186<br />

s<strong>in</strong>gle v. double stage processes 186–7<br />

storage facilities 186, 186, 187<br />

vertical cont<strong>in</strong>uously stirred tank<br />

fermenter 185<br />

production potential 174<br />

production potential (Brazil) 176–83, 191<br />

from alcohol residues 176–7, 178, 179<br />

anaerobic digestion 178<br />

efficiency 178<br />

from sugarcane residues 176–7, 177<br />

production potential (Germany) 174–6<br />

methane yield 176<br />

plants 174, 175, 175<br />

substrates 174, 175–6, 175<br />

substrates 172, 173, 192–3<br />

bioref<strong>in</strong>ery waste 192, 192<br />

developments 192–3<br />

uses 171–2, 189, 190, 191<br />

electricity 172–4, 174, 189<br />

for fuel cells 189, 191<br />

future prospects 193–4<br />

biomass feedstock 153<br />

for biodiesel production 79–80<br />

affect cost 112–13<br />

for biogas 174, 175–6, 175, 176<br />

and carbon dioxide 228–32<br />

collection 22–5<br />

case study (Imperial, Neb.) 24, 25<br />

economics 25–7, 26<br />

regional supply organization 24–5<br />

demand for 9<br />

digestion to methane 171–94<br />

energy balance 224–6, 225, 232<br />

fossil fuel comparisons 224, 225<br />

and greenhouse gas emissions 226–8,<br />

232–3<br />

polymer production 10<br />

preprocess<strong>in</strong>g<br />

cellulose hydrolyz<strong>in</strong>g 32–3<br />

farmers (role of) 32<br />

lign<strong>in</strong> 32<br />

pentose sugars 32<br />

pretreatment 29–31, 106–8, 106, 110<br />

substrates 13–16, 43, 176<br />

algae 79–80<br />

bagasse 15, 51, 64–5, 177–8, 180,<br />

182<br />

black liquor 108–9<br />

cellulosic materials 9–35<br />

cereal straw 13–15<br />

corn 43<br />

fiber 15, 16<br />

stover 13–15, 16, 224–6, 231<br />

crop residues 34, 44<br />

distillers’ gra<strong>in</strong> 226, 231<br />

energy crops (dedicated) 16<br />

palm oil 79, 154, 168<br />

plant oils 79, 117–27<br />

poplar 16<br />

process waste 16, 147<br />

rapeseed oil 77–8, 79, 123, 154<br />

soybean 15, 87, 123, 134, 154, 226–8<br />

v<strong>in</strong>asse 178–80<br />

willow 16, 224, 231<br />

for syngas production 102, 106–9<br />

world production 4<br />

see also cellulosic materials<br />

biomass support particles (BSPs) 136

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!