05.01.2013 Views

Biofuels in Perspective

Biofuels in Perspective

Biofuels in Perspective

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

216 <strong>Biofuels</strong><br />

11. S. Tanisho and Y. Ishiwata, Cont<strong>in</strong>uous hydrogen production from molasses by the bacterium<br />

Enterobacter aerogenes. Int. J. Hydrogen Energy, 19, 807–812 (1994).<br />

12. M. A. Rachman, Y. Nakashimada, T. Kakizono and N. Nishio, Hydrogen production with high<br />

yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes <strong>in</strong> a packed-bed<br />

reactor. Appl. Microbiol. Biotechnol., 49, 450–454 (1998).<br />

13. L. M<strong>in</strong>nan, H. J<strong>in</strong>li, W. Xiaob<strong>in</strong>, X. Huijuan, C. J<strong>in</strong>zao, L. Chuannan, Z. Fengzhang and X.<br />

Liangshu, Isolation and characterization of a high H2-produc<strong>in</strong>g stra<strong>in</strong> Klebsiella oxytoca HP1<br />

from a hot spr<strong>in</strong>g, Res. Microbiol., 156, 76–81 (2005).<br />

14. J. G. van Andel, G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure, Glucose fermentation<br />

by Clostridium butyricum grown under a self generated gas atmosphere <strong>in</strong> chemostat culture,<br />

Appl. Microbiol. Biotechnol., 23, 21–26 (1985).<br />

15. B. H. Kim, P. Bellows, R. Datta and J. G. Zeikus, Control of carbon and electron flow <strong>in</strong><br />

Clostridium acetobutylicum fermentations: utilization of carbon monoxide to <strong>in</strong>hibit hydrogen<br />

production and to enhance butanol yields, Appl. Environ. Microbiol., 48, 764–770 (1984).<br />

16. F. Taguchi, N. Mizukami, K. Hasegawa and T. Saito-Taki, Microbial conversion of arab<strong>in</strong>ose<br />

and xylose to hydrogen by a newly isolated Clostridium sp. No.2, Can. J. Microbiol., 40,<br />

228–233 (1994).<br />

17. S. G. Pavlostathis, T. L. Miller and M. J. Wol<strong>in</strong>, Fermentation of <strong>in</strong>soluble cellulose by cont<strong>in</strong>uous<br />

cultures of Rum<strong>in</strong>ococcus albus, Appl. Environ. Microbiol., 54, 2655–2659 (1988).<br />

18. S. G. Pavlostathis, T. L. Miller, and M. J. Wol<strong>in</strong>, Cellulose fermentation by cultures of Rum<strong>in</strong>ococcus<br />

albus and Methanobrevibacter smithii, Appl. Microbiol. Biotechnol., 33, 109–116<br />

(1990).<br />

19. M. Vancanneyt, P. de Vos, M. Maras and J. De Ley, Ethanol production <strong>in</strong> batch and cont<strong>in</strong>uous<br />

culture from some carbohydrates with Clostridium thermosaccharolyticum LMG 6564, Syst.<br />

Appl. Microbiol., 13, 382–387 (1990).<br />

20. D. Freier, C. P. Mothershed and J. Wiegel, Characterisation of Clostridium thermocellum JW<br />

20, Appl. Environ. Microbiol., 54, 204–211 (1988).<br />

21. G. D. Bothun, J. A. Berberich, B. L. Knutson, H. J. Strobel and S. E. Nokes, Metabolic selectivity<br />

and growth of Clostridium thermocellum <strong>in</strong> cont<strong>in</strong>uous culture under elevated hydrostatic<br />

pressure. Appl. Microbiol. Biotechnol., 65, 149–157 (2004).<br />

22. R. J. Lamed, J. H. Lobos and T. M. Su, Effects of stirr<strong>in</strong>g and hydrogen on fermentation<br />

products of Clostridium thermocellum, Appl. Environ. Microbiol., 54, 1216–1221 (1988).<br />

23. R. Islam, N. Cicek, R. Sparl<strong>in</strong>g and D. Lev<strong>in</strong>, Effect of substrate load<strong>in</strong>g on hydrogen production<br />

dur<strong>in</strong>g anaerobic fermentation by Clostridium thermocellum 27405, Appl. Microbiol.<br />

Biotechnol., 72, 576–83 (2006).<br />

24. T. de Vrije, G.G. de Haas, G.B. Tan, E.R.P. Keijsers and P.A.M. Claassen, Pretreatment of Miscanthus<br />

for hydrogen production by Thermotoga elfii. Int. J. Hydrogen Energy, 27, 1381–1390<br />

(2002).<br />

25. S. A. Van Ooteghem, A. Jones, D. van der Lelie, B. Dong and D. Mahajan, H2 production<br />

and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth<br />

conditions, Biotechnol. Lett., 26, 1223–1232 (2004).<br />

26. C. Schröder, M. Selig and P. Schönheit, Glucose fermentation to acetate, CO2 and H2 <strong>in</strong> the<br />

anaerobic hyperthermophilic eubacterium Thermotoga maritima <strong>in</strong>volvement of the Embden-<br />

Meyerhof pathway. Arch. Microbiol., 161, 460–470 (1994).<br />

27. Y. Xue, Y. Xu, Y. Liu, Y. Ma and P. Zhou P, Thermoanaerobacter tengcongensis sp. a novel<br />

anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spr<strong>in</strong>g <strong>in</strong> Tengcong, Ch<strong>in</strong>a,<br />

Int J Syst Evol Microbiol, 51, 1335–1341 (2001).<br />

28. B. Soboh, D. L<strong>in</strong>der and R. Hedderich, A multisubunit membrane-bound [NiFe] hydrogenase<br />

and an NADH-dependent Fe-only hydrogenase <strong>in</strong> the ferment<strong>in</strong>g bacterium Thermoanaerobacter<br />

tengcongensis, Microbiology 150, 2451–63 (2004).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!