16.04.2013 Views

Ricardo Nicasso Benito A Reduç˜ao de Liapunov-Schmidt ... - Unesp

Ricardo Nicasso Benito A Reduç˜ao de Liapunov-Schmidt ... - Unesp

Ricardo Nicasso Benito A Reduç˜ao de Liapunov-Schmidt ... - Unesp

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A BIFURCAÇÃO DE HOPF 71<br />

assim,<br />

Então, <strong>de</strong> (4.48) temos<br />

(a) φ1(x, 0, α, τ) = p(x 2 , α, τ)x (4.50)<br />

(b) φ2(x, 0, α, τ) = q(x 2 , α, τ)x, (4.51)<br />

p(0, 0, 0) = ∂φ1<br />

(0, 0, 0, 0),<br />

∂x<br />

q(0, 0, 0) = ∂φ2<br />

(0, 0, 0, 0),<br />

∂x<br />

e usando o item (a) da proposição 2.7, concluímos que<br />

Também <strong>de</strong> (4.50) e (4.51) temos que<br />

p(0, 0, 0) = q(0, 0, 0) = 0.<br />

∂p<br />

∂τ (0, 0, τ) = ∂2φ1 (0, 0, 0, τ),<br />

∂x∂τ<br />

∂q<br />

∂τ (0, 0, τ) = ∂2φ2 (0, 0, 0, τ),<br />

∂x∂τ<br />

pelo item (g) da proposição 2.7, sabemos que<br />

∂ 2 φj<br />

∂x∂τ = 〈v∗ j , d(Φτ)v1 − d 2 Φ(v1, L −1 EΦτ)〉 (4.52)<br />

on<strong>de</strong> Φτ = ∂Φ<br />

. Mas <strong>de</strong> (4.19), segue que<br />

∂τ<br />

∂Φ du<br />

(u, α, τ) =<br />

∂τ ds .<br />

E é trivial que ∂Φ<br />

(0, α, τ) = 0, então o segundo termo em (4.52) <strong>de</strong>saparece.<br />

∂τ<br />

Para o primeiro termo temos<br />

Φτ(0 + tv1, 0, τ) − Φτ(0, 0, τ)<br />

d(Φτ)v1 = lim<br />

t→0<br />

t<br />

= lim<br />

t→0<br />

d(tv1)<br />

ds<br />

t<br />

t<br />

= lim<br />

t→0<br />

dv1<br />

ds<br />

t<br />

= dv1<br />

ds .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!