22.03.2013 Views

Vision and Voyages for Planetary Science in the - Solar System ...

Vision and Voyages for Planetary Science in the - Solar System ...

Vision and Voyages for Planetary Science in the - Solar System ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Although Ka-b<strong>and</strong> downl<strong>in</strong>k has a clear capacity advantage, <strong>the</strong>re is a need to ma<strong>in</strong>ta<strong>in</strong><br />

multiple b<strong>and</strong> downl<strong>in</strong>k capability. For example, three-b<strong>and</strong> telemetry dur<strong>in</strong>g outer planet<br />

atmospheric occultations allows sound<strong>in</strong>g of different pressure depths with<strong>in</strong> <strong>the</strong> atmosphere. In<br />

addition, S-b<strong>and</strong> is required <strong>for</strong> communications from Venus dur<strong>in</strong>g probe, balloon, l<strong>and</strong>er, <strong>and</strong> orbit<br />

<strong>in</strong>sertion operations where o<strong>the</strong>r b<strong>and</strong>s cannot penetrate <strong>the</strong> atmosphere. X-b<strong>and</strong> capability is<br />

required <strong>for</strong> communication through <strong>the</strong> atmosphere of Titan, <strong>and</strong> also <strong>for</strong> emergency spacecraft<br />

communications. F<strong>in</strong>ally, <strong>the</strong> DSN is crucial <strong>for</strong> precision spacecraft rang<strong>in</strong>g <strong>and</strong> navigation, <strong>and</strong> this<br />

capability must be ma<strong>in</strong>ta<strong>in</strong>ed.<br />

TABLE 10.2 Typical Data Volumes (Gbit transmitted <strong>in</strong> an 8-hour pass) <strong>for</strong> Some Current <strong>and</strong><br />

Future <strong>Planetary</strong> Missions Us<strong>in</strong>g Different DSN Antennas <strong>and</strong> Communication B<strong>and</strong>s<br />

Antenna B<strong>and</strong><br />

Typical data volume, Gbit/8-hour pass<br />

Max Data Rate<br />

(kbps) a MRO b JEO c Cass<strong>in</strong>i d Uranus e<br />

34-m X 8,400-8,500 115<br />

New<br />

Horizons f<br />

at Pluto<br />

1 0.001<br />

Ka 31,800-32,300 86 g 4 0.2<br />

70-m X 8,400-8,500 173 4 0.003<br />

or array Ka 31,800-32,300 800 h 18 0.9<br />

a Actual downl<strong>in</strong>k rate depends on spacecraft transmitter power, High Ga<strong>in</strong> Antenna size/ga<strong>in</strong>, distance, DSN<br />

elevation, wea<strong>the</strong>r.<br />

b<br />

MRO has 35W Ka <strong>and</strong> 100W X-b<strong>and</strong> transmitters, 3-m High Ga<strong>in</strong> Antenna, 160-Gb storage.<br />

c<br />

JEO assumes 25W X <strong>and</strong> Ka-b<strong>and</strong> transmitters, 3-m High Ga<strong>in</strong> Antenna, 17-Gb storage.<br />

d<br />

Cass<strong>in</strong>i has 20W X-b<strong>and</strong> transmitter, 3-m High Ga<strong>in</strong> Antenna, 4-Gb storage.<br />

e<br />

Uranus Orbiter <strong>and</strong> Probe assumes 40W Ka-b<strong>and</strong> transmitters, 2.5-m High Ga<strong>in</strong> Antenna, 32-Gbit Storage.<br />

f<br />

New Horizons has 12W X-b<strong>and</strong> transmitter, 2.1-m High Ga<strong>in</strong> Antenna, 132-Gb storage.<br />

g<br />

Non-optimal test case.<br />

h<br />

Best case.<br />

NOTE: Bold text denotes downl<strong>in</strong>k-limited cases, <strong>and</strong> italic text denotes <strong>the</strong>oretical capability.<br />

The committee recommends that all three DSN complexes should ma<strong>in</strong>ta<strong>in</strong> high power<br />

upl<strong>in</strong>k capability <strong>in</strong> X <strong>and</strong> Ka-b<strong>and</strong>, <strong>and</strong> downl<strong>in</strong>k capability <strong>in</strong> S, Ka, <strong>and</strong> X-b<strong>and</strong>s. NASA<br />

should exp<strong>and</strong> DSN capacities to meet <strong>the</strong> navigation <strong>and</strong> communication requirements of<br />

missions recommended by this decadal survey, with adequate marg<strong>in</strong>s.<br />

Sample Curation <strong>and</strong> Laboratory Facilities<br />

<strong>Planetary</strong> samples are arguably some of <strong>the</strong> most precious materials on Earth. Just as data<br />

returned from planetary spacecraft must be carefully archived <strong>and</strong> distributed to <strong>in</strong>vestigators,<br />

samples brought to Earth from space at great cost must be curated <strong>and</strong> kept uncontam<strong>in</strong>ated <strong>and</strong> safe<br />

<strong>for</strong> cont<strong>in</strong>ued study. Samples are a “gift that keeps on giv<strong>in</strong>g”, yield<strong>in</strong>g discoveries long after <strong>the</strong>y<br />

have been collected <strong>and</strong> returned. Even today, scientists are us<strong>in</strong>g new, state-of-<strong>the</strong>-art laboratory<br />

<strong>in</strong>struments to discover new th<strong>in</strong>gs about lunar samples collected dur<strong>in</strong>g <strong>the</strong> Apollo program four<br />

PREPUBLICATION COPY—SUBJECT TO FURTHER EDITORIAL CORRECTION<br />

10-15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!