31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

3.5. NUMERICAL SOLUTION 117<br />

since<br />

∣<br />

∣˜z ′′<br />

T (k) ∣ ∣ = 1<br />

2π<br />

∣<br />

∫ ∞<br />

−∞<br />

v 2 e −ivk ˜ζT (v)dv<br />

∣<br />

≤ 1 ∫ ∞<br />

|Φ T (v − i)|dv + 1<br />

2π −∞<br />

2π<br />

∫ ∞<br />

−∞<br />

√<br />

√<br />

|Φ A<br />

2<br />

T (v − i)|dv ≤ πAT ,<br />

where we have used Equation (1.25) and Lemma 1.10. Combining the above two expressions,<br />

one obtains:<br />

|ε I | ≤ 1 L 2 √<br />

π 3<br />

2AT .<br />

Taking L and M suffici<strong>en</strong>tly large so that L/M becomes small, one can make the total error<br />

ε = ε T + ε D + ε I arbitrarily small. In practice, the param<strong>et</strong>ers M and L of the discr<strong>et</strong>ization<br />

scheme should be chos<strong>en</strong> such that the total numerical error is of the same or<strong>de</strong>r as the noise<br />

level in the data. The continuity result (Theorem 2.16) th<strong>en</strong> guarantees that the numerical<br />

approximation of the calibrated measure will be close to the true solution.<br />

3.5.2 Computing the gradi<strong>en</strong>t of the calibration functional<br />

We emphasize that for the optimization algorithm to work correctly, we must compute the exact<br />

gradi<strong>en</strong>t of the approximate functional (3.26), rather than an approximation of the gradi<strong>en</strong>t of<br />

the exact functional. The gradi<strong>en</strong>t of the approximate calibration functional is computed as<br />

follows:<br />

∂Ĵα(q 0 , . . . , q M−1 )<br />

∂q k<br />

=<br />

N∑<br />

w i (ĈQ (T i , K i ) − C M (T i , K i )) ∂ĈQ (T i , K i )<br />

∂q k<br />

⎛<br />

⎞<br />

+ α(ex k<br />

− 1)<br />

⎝ A M−1<br />

2A 2 + ∑<br />

bP + (e x j<br />

− 1)q j<br />

⎠ + α log(q k /p k ).<br />

i=1<br />

The nontrivial part is therefore to compute the gradi<strong>en</strong>t of the approximate option price<br />

Ĉ Q (T i , K i ) and for this, due to the linear structure of the interpolating formula (3.31) it suffices<br />

to know the gradi<strong>en</strong>t of ˆ˜z T at the points {x i }<br />

i=0 M−1 . From Equation (3.30),<br />

[<br />

∂ˆ˜z T (x j )<br />

= ∆ ∂q m 2π e−ix ju M−1<br />

∂<br />

DFT j w ˜ζ<br />

]<br />

T (u M−1−k )<br />

k e −ix 0∆k<br />

,<br />

∂q m<br />

j=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!