31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

146 CHAPTER 4. DEPENDENCE OF LEVY PROCESSES<br />

Fix ε > 0 and choose a i , b i ∈ S i : a i ≤ b i , i = 2, . . . , d such that<br />

F 1 (y 1 ) ≤ ε + V F (|x ∗ 1, y 1 | × |a 2 , b 2 | × · · · × |a d , b d |).<br />

For i = 2, . . . , d l<strong>et</strong> ã i := a i ∧ x ∗ i and ˜b i := b i ∨ x i and <strong>de</strong>note ˜B := |ã 2 , ˜b 2 | × · · · × |ã d , ˜b d |. Th<strong>en</strong>,<br />

since F is d-increasing, V F (|y 1 , x 1 | × B) ≤ V F (|y 1 , x 1 | × ˜B) and V F (|x ∗ 1 , y 1| × |a 2 , b 2 | × · · · ×<br />

|a d , b d |) ≤ V F (|x ∗ 1 , y 1| × ˜B). Therefore<br />

V F (|y 1 , x 1 | × B) ≤ V F (|x ∗ 1, x 1 | × ˜B) − F 1 (y 1 ) + ε ≤ F 1 (x 1 ) − F 1 (y 1 ) + ε.<br />

Since the above is true for all ε > 0, in view of (4.12), the proof of (4.11) is compl<strong>et</strong>e.<br />

We close this section with the <strong>de</strong>finition of (ordinary) copula and the Sklar’s theorem, which<br />

relates copulas to distribution functions. The proof of Sklar’s theorem can be found in [90].<br />

Definition 4.11 (Copula). A d-dim<strong>en</strong>sional copula (a d-copula) is a function C : [0, 1] d →<br />

[0, 1] such that<br />

1. C is groun<strong>de</strong>d and d-increasing.<br />

2. C has margins C k , k = 1, 2, . . . , d, which satisfy C k (u) = u for all u in [0, 1].<br />

Theorem 4.5 (Sklar). L<strong>et</strong> F be a d-dim<strong>en</strong>sional distribution function with margins F 1 , . . . , F d .<br />

Th<strong>en</strong> there exists a d-dim<strong>en</strong>sional copula C such that for all x ∈ ¯R d ,<br />

F (x 1 , x 2 , . . . , x d ) = C(F 1 (x 1 ), F 2 (x 2 ), . . . , F d (x d )). (4.13)<br />

If F 1 , . . . , F d are continuous th<strong>en</strong> C is unique; otherwise, C is uniquely <strong>de</strong>termined on Ran F 1 ×<br />

· · · × Ran F d . Conversely, if C is a d-copula and F 1 , . . . , F d are distribution functions, th<strong>en</strong> the<br />

function F <strong>de</strong>fined by (4.13) is a d-dim<strong>en</strong>sional distribution function with margins F 1 , . . . , F d .<br />

4.4 Lévy copulas for spectrally positive Lévy processes<br />

This section discusses the notion of Lévy copula for Lévy processes with only positive jumps in<br />

each compon<strong>en</strong>t. This notion was introduced by the pres<strong>en</strong>t author in [92]. Examples of Lévy<br />

copulas for spectrally positive Lévy processes and m<strong>et</strong>hods to construct them will be giv<strong>en</strong> in<br />

Sections 4.6 and 5.1 tog<strong>et</strong>her with the examples of g<strong>en</strong>eral Lévy copulas. Further properties of

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!