31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

182 CHAPTER 5. APPLICATIONS OF LEVY COPULAS<br />

5.3 A two-dim<strong>en</strong>sional variance gamma mo<strong>de</strong>l for option pricing<br />

In this section we pres<strong>en</strong>t a case study showing how one particular mo<strong>de</strong>l, constructed using<br />

Lévy copulas, can be used to price multi-ass<strong>et</strong> options.<br />

The mo<strong>de</strong>l We suppose that un<strong>de</strong>r the risk-neutral probability, the prices {S 1 t } t≥0 and<br />

{S 2 t } t≥0 of two risky ass<strong>et</strong>s satisfy<br />

S 1 t = e rt+X1 t , S 2 t = e rt+X2 t , (5.18)<br />

where (X 1 , X 2 ) is a Lévy process on R d with characteristic tripl<strong>et</strong> (0, ν, b) with respect to<br />

zero truncation function. X 1 and X 2 are supposed to be variance gamma processes, that is,<br />

the margins ν 1 and ν 2 of ν are of the form (1.19) with param<strong>et</strong>ers c 1 , λ 1 +, λ 1 − and c 2 , λ 2 +, λ 2 −.<br />

The Lévy copula F of ν is supposed to be of the form (5.4) with param<strong>et</strong>ers θ and η. The<br />

no-arbitrage condition imposes that for i = 1, 2, λ i + > 1 and the drift coeffici<strong>en</strong>ts satisfy<br />

(<br />

b i = c i log 1 − 1<br />

λ i + 1<br />

+ λ i − 1 )<br />

− λ i .<br />

+ λi −<br />

The problem In the rest of this section, mo<strong>de</strong>l (5.18) will be used to price two differ<strong>en</strong>t kinds<br />

of multi-ass<strong>et</strong> options: the option on weighted average, whose payoff at expiration date T is<br />

giv<strong>en</strong> by<br />

( 2∑ +<br />

H T = w i ST i − K)<br />

with w 1,2 ≥ 0 and w 1 + w 2 = 1,<br />

i=1<br />

and the best-of or alternative option with payoff structure<br />

H T =<br />

( ( S<br />

1<br />

) ) +<br />

N max T<br />

S0<br />

1 , S2 T<br />

S0<br />

2 − K<br />

Option pricing by Monte Carlo Bask<strong>et</strong> options, <strong>de</strong>scribed above can be priced by Monte<br />

Carlo m<strong>et</strong>hod using European options on individual stocks as control variates. D<strong>en</strong>ote the<br />

discounted payoffs of European options by<br />

V i T = e −rT (S i T − K) + for i = 1, 2.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!