31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1.4. PRICING EUROPEAN OPTIONS 55<br />

Since the bound ˜g n (v) is increasing on (−∞, 0) and <strong>de</strong>creasing on (0, ∞),<br />

∆ 3 N−2<br />

∑<br />

sup<br />

∂ 2<br />

∫ L/2<br />

24π ∣∂v 2 e−ivk ζ T (v)<br />

∣ ≤ ∆3<br />

12π ˜g 2(0) + ∆2<br />

24π<br />

m=0<br />

−L/2<br />

⎧<br />

2∑<br />

≤ ∆2 C<br />

⎨<br />

3−l<br />

l∑<br />

12π (3 − l)! ⎩ 2∆ |k − rT | j ∑l−1<br />

|k − rT | j<br />

+<br />

j!<br />

j!<br />

≤ ∆2<br />

6π<br />

l=0<br />

2∑<br />

l=0<br />

j=0<br />

j=0<br />

{<br />

C (<br />

3−l<br />

∆ + π )<br />

e |k−rT | + log<br />

(3 − l)! 2<br />

˜g 2 (v)dv<br />

∫ L/2<br />

−L/2<br />

(<br />

L<br />

2 + √<br />

L 2<br />

4 + 1 )<br />

dv |k − rT |l<br />

+<br />

1 + v2 l!<br />

}<br />

|k − rT | l<br />

l!<br />

.<br />

∫ L/2<br />

−L/2<br />

⎫<br />

dv<br />

⎬<br />

√<br />

1 + v 2 ⎭<br />

To compl<strong>et</strong>e the proof of (1.32) it remains to substitute this bound and a similar bound for<br />

∆<br />

∑<br />

∣ ∣ 3 N−2 ∣∣<br />

24π m=0 sup ∂ 2<br />

e −ivk ζ Σ ∣∣<br />

∂v 2 T (v) into (1.34).<br />

The Simpson rule (cf. [32]) is <strong>de</strong>fined by:<br />

∫ x+2h<br />

x<br />

f(ξ)dξ = 1 h(f(x) + 4f(x + h) + f(x + 2h)) + R,<br />

3<br />

where R = 1<br />

90 h4 f (4) (x ∗ )<br />

for some x ∗ ∈ [x, x + 2h]. The proof of (1.33) can be carried out in the same way as for the<br />

trapezoidal rule.<br />

Example 1.1. L<strong>et</strong> us compute the truncation and discr<strong>et</strong>ization errors in the Merton mo<strong>de</strong>l<br />

(1.16) with param<strong>et</strong>ers σ = 0.1, λ = 2, δ = 0.1, µ = 0 for options with maturity T = 0.25.<br />

Taking Σ = 0.1, we obtain the following values of the coeffici<strong>en</strong>ts C k and C Σ k :<br />

k C k Ck<br />

Σ<br />

1 0.0871 0.05<br />

2 0.0076 0.0025<br />

3 0.0024 2.85 · 10 −4<br />

4 3.29 · 10 −4 1.88 · 10 −5<br />

5 1.82 · 10 −4 2.99 · 10 −6<br />

With 4048 points and the log strike step d equal to 0.01, the truncation error is extremely small:<br />

ε T = 2 · 10 −59 , and the discr<strong>et</strong>ization error for at the money options is giv<strong>en</strong> by ε D = 0.0013<br />

for the trapezoidal rule and by ε D = 3.8 · 10 −5 for the Simpson rule. Since the call option price<br />

in this s<strong>et</strong>ting (S = K = 1, r = q = 0) is C = 0.0313, we conclu<strong>de</strong> that the Simpson rule gives<br />

an acceptable pricing error for this choice of param<strong>et</strong>ers.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!