31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

5.2. SIMULATION OF DEPENDENT LEVY PROCESSES 177<br />

For every ε > 0, in view of (5.11), there exists N 0 such that for every n ≥ N 0 , F ξ (x + n )−F ∗ ≤ ε/2<br />

and F ∗ − F ξ (x − n ) ≤ ε/2. Since G is differ<strong>en</strong>tiable with respect to the first variable at points<br />

(ξ, x + n ) and (ξ, x − n ), we can choose δ small <strong>en</strong>ough so that<br />

and<br />

This proves that<br />

G(ξ + δ, x − n ) − G(ξ, x − n )<br />

∣<br />

δ<br />

G(ξ + δ, x + n ) − G(ξ, x + n )<br />

∣<br />

δ<br />

− F ξ (x − n )<br />

∣ ≤ ε/2<br />

− F ξ (x + n )<br />

∣ ≤ ε/2<br />

G(ξ + δ, x) − G(ξ, x)<br />

lim<br />

= F ∗ .<br />

δ→0 δ<br />

We have thus shown that F ξ satisfies Equation (5.9) in all points where (5.11) holds, that is,<br />

where F ξ is continuous.<br />

In the following two theorems we show how Lévy copulas may be used to simulate multidim<strong>en</strong>sional<br />

Lévy processes with specified <strong>de</strong>p<strong>en</strong><strong>de</strong>nce. Our results can be se<strong>en</strong> as an ext<strong>en</strong>sion<br />

to Lévy processes, repres<strong>en</strong>ted by Lévy copulas, of the series repres<strong>en</strong>tation results, <strong>de</strong>veloped<br />

by Rosinski and others (see [84] and refer<strong>en</strong>ces therein). The first result concerns the simpler<br />

case wh<strong>en</strong> the Lévy process has finite variation on compacts.<br />

Theorem 5.6. (Simulation of multidim<strong>en</strong>sional Lévy processes, finite variation case)<br />

L<strong>et</strong> ν be a Lévy measure on R d , satisfying ∫ (|x| ∧ 1)ν(dx) < ∞, with marginal tail integrals U i ,<br />

i = 1, . . . , d and Lévy copula F (x 1 , . . . , x d ), such that the condition (5.5) is satisfied, and l<strong>et</strong><br />

K(x 1 , dx 2 · · · dx d ) be the corresponding conditional probability distributions, <strong>de</strong>fined by (5.8). L<strong>et</strong><br />

{V i } be a sequ<strong>en</strong>ce of in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt random variables, uniformly distributed on [0, 1]. Introduce<br />

d random sequ<strong>en</strong>ces {Γ 1 i }, . . . , {Γd i }, in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt from {V i} such that<br />

• N = ∑ ∞<br />

i=1 δ {Γ 1 i } is a Poisson random measure on R with int<strong>en</strong>sity measure λ.<br />

• Conditionally on Γ 1 i , the random vector (Γ2 i , . . . , Γd i ) is in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt from Γk j<br />

and all k and is distributed on R d−1 with law K(Γ 1 i , dx 2 · · · dx d ).<br />

with j ≠ i<br />

Th<strong>en</strong><br />

{Z t } 0≤t≤1 where Z k t =<br />

∞∑<br />

i=1<br />

U (−1)<br />

i<br />

(Γ k i )1 [0,t] (V i ), k = 1, . . . , d, (5.12)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!