31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

68 CHAPTER 2. THE CALIBRATION PROBLEM<br />

Proposition 2.5. Suppose that there exists a couple (T 0 , K 0 ) with w 0 := w({T 0 , K 0 }) > 0 and<br />

l<strong>et</strong> C M be such that the condition (2.9) is satisfied for some Q 0 ∈ M ∩ L B . Th<strong>en</strong> the solutions<br />

of the least squares calibration problem (2.4) on M ∩ L B <strong>de</strong>p<strong>en</strong>d continuously on the mark<strong>et</strong><br />

data at the point C M .<br />

Proof. L<strong>et</strong> {CM n } n≥0 be a sequ<strong>en</strong>ce of data such that ‖CM n − C M‖ w −−−→<br />

n→∞<br />

n l<strong>et</strong> Q n be a solution of the calibration problem (2.4) on M ∩ L B with data CM<br />

n<br />

0, and for every<br />

(we can<br />

suppose without loss of g<strong>en</strong>erality that a solution exists for all n because it exists starting with<br />

a suffici<strong>en</strong>tly large n by Theorem 2.1). Th<strong>en</strong>, using the triangle inequality several times, we<br />

obtain:<br />

|S 0 − C Qn (T 0 , K 0 )|<br />

≥ |S 0 − C M (T 0 , K 0 )| − |C n M(T 0 , K 0 ) − C Qn (T 0 , K 0 )| − |C n M(T 0 , K 0 ) − C M (T 0 , K 0 )|<br />

≥ |S 0 − C M (T 0 , K 0 )| − ‖Cn M − CQ 0<br />

‖ w<br />

√<br />

w0<br />

− |C n M(T 0 , K 0 ) − C M (T 0 , K 0 )|<br />

≥ |S 0 − C M (T 0 , K 0 )| − ‖C M − C Q 0<br />

‖ w<br />

√<br />

w0<br />

− 2 ‖Cn M − C M‖ w<br />

√<br />

w0<br />

> C ′ > 0<br />

for some C ′ , starting from a suffici<strong>en</strong>tly large n. Therefore, by Lemmas 2.3 and 2.4, {Q n } has<br />

a subsequ<strong>en</strong>ce that converges weakly towards some Q ∗ ∈ M ∩ L B .<br />

L<strong>et</strong> {Q nm } ⊆ {Q n } with Q nm ⇒ Q ∗ ∈ M ∩ L B and l<strong>et</strong> Q ∈ M ∩ L B . Using Lemma 2.2 and<br />

the triangle inequality, we obtain:<br />

‖C Q∗ − C M ‖ w = lim ‖C Qnm − C M ‖ w ≤ lim inf<br />

m m<br />

{‖CQnm − C nm<br />

M ‖ w + ‖C nm<br />

M − C M‖ w }<br />

≤ lim inf<br />

m<br />

‖CQnm − C nm<br />

M ‖ w ≤ lim inf<br />

m<br />

‖CQ − C nm<br />

M ‖ w ≤ ‖C Q − C M ‖ w ,<br />

which shows that Q ∗ is in<strong>de</strong>ed a solution of the calibration problem (2.4) with data C M .<br />

2.1.4 Numerical difficulties of least squares calibration<br />

A major obstacle for the numerical implem<strong>en</strong>tation of the least squares calibration is the nonconvexity<br />

of the optimization problem (2.4), which is due to the non-convexity of the domain<br />

(M ∩ L), where the pricing error functional Q ↦→ ‖C Q − C M ‖ 2 is to be optimized. Due to this<br />

difficulty, the pricing error functional may have several local minima, and the gradi<strong>en</strong>t <strong>de</strong>sc<strong>en</strong>t

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!