31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

82 CHAPTER 2. THE CALIBRATION PROBLEM<br />

and<br />

E P [E(N ′′ ) T log E(N ′′ ) T ] = bT + e bT<br />

∞ ∑<br />

k=0<br />

e<br />

−λT (λT )k<br />

k!<br />

E[ ∏ s≤T<br />

(1 + ∆N s ′′ ) ∑ log(1 + ∆N s ′′ )|k jumps]<br />

s≤T<br />

Since, un<strong>de</strong>r the condition that N ′′ jumps exactly k times in the interval [0, T ], the jump sizes<br />

are in<strong>de</strong>p<strong>en</strong><strong>de</strong>nt and i<strong>de</strong>ntically distributed, we find, <strong>de</strong>noting the g<strong>en</strong>eric jump size by ∆N ′′ :<br />

E P [E(N ′′ ) T log E(N ′′ ) T ]<br />

∑<br />

∞<br />

= bT + e bT e<br />

k=0<br />

−λT (λT )k<br />

= bT + λT E[(1 + ∆N ′′ ) log(1 + ∆N ′′ )]<br />

∫ ∞<br />

= bT + T (1 + x) log(1 + x)ν ′′ (dx)<br />

−∞<br />

∫<br />

= T (φ(x) log φ(x) + 1 − φ(x))ν P (dx).<br />

R\I<br />

k!<br />

kE[1 + ∆N ′′ ] k−1 E[(1 + ∆N ′′ ) log(1 + ∆N ′′ )]<br />

In particular, E P [E(N ′′ ) T log E(N ′′ ) T ] is finite if and only if the integral in the last line is finite.<br />

Combining the above expression with (2.21) and (2.20) finishes the proof.<br />

2.4.1 Properties of the relative <strong>en</strong>tropy functional<br />

Lemma 2.10. L<strong>et</strong> P, {P n } n≥1 ⊂ L + B for some B > 0, such that P n ⇒ P . Th<strong>en</strong> for every r > 0,<br />

the level s<strong>et</strong> L r := {Q ∈ L : I(Q|P n ) ≤ r for some n} is tight.<br />

Proof. For any Q ∈ L r , P Q <strong>de</strong>notes any elem<strong>en</strong>t of {P n } n≥1 , for which I(Q|P Q ) ≤ r.<br />

characteristic tripl<strong>et</strong> of Q is <strong>de</strong>noted by (A Q , ν Q , γ Q ) and that of P Q by (A P Q, ν P Q, γ P Q). In<br />

addition, we <strong>de</strong>fine φ Q := dνQ . From Theorem 2.9,<br />

dν P Q<br />

∫ ∞<br />

−∞<br />

(φ Q (x) log φ Q (x) + 1 − φ Q (x))ν P Q<br />

(dx) ≤ r/T ∞ .<br />

The<br />

Therefore, for u suffici<strong>en</strong>tly large,<br />

∫<br />

{φ Q >u}<br />

∫<br />

φ Q ν P Q<br />

(dx) ≤<br />

{φ Q >u}<br />

2φ Q [φ Q log φ Q + 1 − φ Q ]ν P Q(dx)<br />

φ Q log φ Q<br />

≤<br />

2r<br />

T ∞ log u ,<br />

which <strong>en</strong>tails that for u suffici<strong>en</strong>tly large,<br />

∫<br />

{φ Q >u}<br />

ν Q (dx) ≤<br />

2r<br />

T ∞ log u

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!