31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

2.5. REGULARIZING THE CALIBRATION PROBLEM 89<br />

On the other hand,<br />

e i(v−i)x + iv − e x − ive x<br />

(v − i)v<br />

= iex (e ivx − 1)<br />

v<br />

− i(ei(v−i)x − 1)<br />

v − i<br />

= −xe x − ivx2<br />

2 eθ 1ivx + x +<br />

i(v − i)x2<br />

e θ 2i(v−i)x<br />

2<br />

with some θ 1 , θ 2 ∈ [0, 1]. Therefore, for all v with |v| ≤ 2,<br />

e i(v−i)x + iv − e x − ive x<br />

∣ (v − i)v ∣ ≤ x(1 − ex ) + x2<br />

2 (v + √ 1 + v 2 e x ) ≤ x(1 − e x ) + x 2 (1 + 2e x ). (2.32)<br />

Since the support of ν is boun<strong>de</strong>d from above, the right-hand si<strong>de</strong>s of (2.31) and (2.32) are<br />

ν-integrable, and the proof of the lemma is compl<strong>et</strong>ed.<br />

Proof of Theorem 2.14. L<strong>et</strong> Q ∗ be a solution of (2.27) with prior P . By Theorem 2.7, there<br />

exists Q 0 ∈ M ∩ L such that Q 0 ∼ P . D<strong>en</strong>ote the characteristic tripl<strong>et</strong> of Q ∗ by (A, ν ∗ , γ ∗ ) and<br />

that of Q 0 by (A, ν 0 , γ 0 ).<br />

L<strong>et</strong> Q x be a Lévy process with characteristic tripl<strong>et</strong><br />

(A, xν 0 + (1 − x)ν ∗ , xγ 0 + (1 − x)γ ∗ ).<br />

From the linearity of the martingale condition (1.2), it follows that for all x ∈ [0, 1], Q x ∈ M∩L.<br />

Since Q ∗ realizes the minimum of J α (Q), necessarily J α (Q x ) − J α (Q ∗ ) ≥ 0 for all x ∈ [0, 1].<br />

Our strategy for proving the theorem is first to show that ‖C M −C Qx ‖ 2 −‖C M −C Q∗ ‖ 2<br />

x<br />

is boun<strong>de</strong>d<br />

as x → 0 and th<strong>en</strong> to show that if I(Qx|P )−I(Q∗ |P )<br />

x<br />

is boun<strong>de</strong>d from below as x → 0, necessarily<br />

Q ∗ ∼ P .<br />

The first step is to prove that the characteristic function Φ ∗ of Q ∗ satisfies the condition<br />

(2.28) for some T < T 0 . If A > 0, this is trivial; suppose therefore that A = 0. In this case,<br />

|Φ ∗ T (u)| = exp(T ∫ ∞<br />

−∞ (cos(ux) − 1)ν∗ (dx)). D<strong>en</strong>ote dν∗<br />

dν P<br />

:= φ ∗ . Since Q ∗ ≪ P , by Theorem<br />

1.5, ∫ ∞<br />

−∞ (√ φ ∗ (x) − 1) 2 ν P (dx) ≤ K < ∞ for some constant K. Therefore, there exists another<br />

constant C > 0 such that<br />

∫<br />

{φ ∗ (x)>C}<br />

(1 − cos(ux))|φ ∗ − 1|ν P (dx) < C

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!