31.05.2014 Views

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

Processus de Lévy en Finance - Laboratoire de Probabilités et ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

54 CHAPTER 1. LEVY PROCESSES AND EXP-LEVY MODELS<br />

From the martingale condition,<br />

Γ T (v) = Φ T (v − i) − Φ T (−i)<br />

v<br />

=<br />

∫ 1<br />

0<br />

Φ ′ T (vt − i)dt.<br />

Applying the dominated converg<strong>en</strong>ce theorem once again, we conclu<strong>de</strong> that<br />

and therefore |Γ (n)<br />

T (v)| ≤ C n+1<br />

n+1<br />

Γ (n)<br />

T (v) = ∫ 1<br />

0<br />

for all n ≥ 0.<br />

t n Φ (n+1)<br />

T<br />

(vt − i)dt,<br />

Proposition 1.13. Suppose that the integral in (1.28) is approximated using the trapezoidal<br />

rule. Th<strong>en</strong> the discr<strong>et</strong>ization error ε D satisfies<br />

{<br />

2∑<br />

|ε D | ≤ ∆2 C 3−l + C3−l<br />

Σ (<br />

∆ + π 6π (3 − l)! 2<br />

l=0<br />

)<br />

e |k−rT | + log<br />

(<br />

L<br />

2 + √<br />

L 2<br />

4 + 1 )<br />

where C Σ k is computed as in (1.31) for the characteristic function ΦΣ T .<br />

}<br />

|k − rT | l<br />

, (1.32)<br />

l!<br />

If this integral is approximated using the Simpson rule, ε D satisfies<br />

{ (<br />

4∑<br />

|ε D | ≤ ∆4 C 5−l + C5−l<br />

Σ (<br />

2∆ + π √ ) }<br />

)<br />

e |k−rT | L L<br />

+ log<br />

5π (5 − l)!<br />

2<br />

2 + 2<br />

4 + 1 |k − rT | l<br />

, (1.33)<br />

l!<br />

l=0<br />

Proof. The trapezoidal rule (cf. [32]) is <strong>de</strong>fined by<br />

∫ x+h<br />

x<br />

f(ξ)dξ = 1 2 h(f(x) + f(x + h)) + R with R = − 1 12 h3 f ′′ (x ∗ )<br />

for some x ∗ ∈ [x, x + h]. The sampling error in (1.28) therefore satisfies:<br />

|ε D | ≤ ∆3 N−2<br />

∑<br />

24π<br />

= ∆3<br />

24π<br />

m=0 v∈[−L/2+m∆,−L/2+(m+1)∆]<br />

N−2<br />

∑<br />

m=0<br />

sup<br />

∂ 2<br />

∣∂v 2 e−ivk ˜ζT (v)<br />

∣<br />

{<br />

sup<br />

∂ 2<br />

∣ ∣∣∣<br />

∣∂v 2 e−ivk ζ T (v)<br />

∣ + sup ∂ 2<br />

}<br />

∂v 2 e−ivk ζT Σ (v)<br />

∣ , (1.34)<br />

where ζT Σ (v) := e ivrT ΦΣ T<br />

(v − i) − 1<br />

.<br />

iv(1 + iv)<br />

Observe that e −ivk ζ T (v) = e−iv(k−rT )<br />

i(1+iv)<br />

Γ T (v), and therefore<br />

∂ n<br />

∣∂v n (eivk ζ T (v))<br />

∣<br />

≤<br />

n∑<br />

l=0<br />

≤ n!<br />

|Γ (n−l)<br />

T<br />

n∑<br />

l=0<br />

n!<br />

(v)|<br />

(n − l)!<br />

C n−l+1<br />

(n − l + 1)!<br />

l∑ |k − rT | j (<br />

1<br />

√<br />

j! 1 + v 2<br />

j=0<br />

) l−j+1<br />

l∑ |k − rT | j ( )<br />

1 l−j+1<br />

√ := ˜g n (v).<br />

j! 1 + v 2<br />

j=0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!